Las Tailocinas como Agentes Antimicrobianos
Características Estructurales, Actividad Antimicrobiana y Potencial Terapéutico
DOI:
https://doi.org/10.17533/udea.hm.v15n2a02Palabras clave:
Alternativa antibiótica., Bacteriocinas., Fago sin cabeza., Péptidos antimicrobianos., Resistencia antimicrobiana., Tailocinas.Resumen
La resistencia antimicrobiana (RAM) representa una amenaza global que compromete la efectividad de los tratamientos actuales y pone en riesgo la salud pública, especialmente frente a infecciones causadas por bacterias multirresistentes. En este contexto, las tailocinas, un subgrupo especializado de bacteriocinas, han ganado atención debido a su actividad antimicrobiana específica y su mecanismo de acción basado en la formación de poros en la membrana de las células diana que induce su lisis. Estas moléculas proteicas, derivadas estructuralmente de las colas de bacteriófagos, poseen una alta especificidad hacia bacterias filogenéticamente relacionadas, lo que minimiza su impacto en la microbiota residente y reduce el riesgo de disbiosis, en contraste con otros agentes antimicrobianos que presentan un espectro de acción más amplio y menos específico. A pesar de su prometedor potencial, las aplicaciones terapéuticas de las tailocinas están en una etapa preliminar, razón por la cual aún no se encuentra evidencia de ensayos en humanos. Los estudios actuales se han limitado a modelos animales y ambientes como la rizosfera, en los cuales no se ha evaluado su eficacia frente a bacterias resistentes. Sin embargo, el estado del arte destaca su especificidad para algunas bacterias y su ventaja de no portar material genético, lo que disminuye el riesgo de transferencia horizontal de genes de resistencia. No obstante, es fundamental que futuras investigaciones, en modelos avanzados, se enfoquen en optimizar la estandarización de protocolos para su uso en aplicaciones clínicas y la producción a gran escala. Superar estos desafíos será determinante para consolidar a las tailocinas como una alternativa viable y accesible en la lucha contra la resistencia antimicrobiana.
Descargas
Citas
[1] Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019;128[3]:630. https://doi.org/10.1111/jam.14386
[2] Ahern PP, Faith JJ, Gordon JI. Mining the Human Gut Microbiota for Effector Strains that Shape the Immune System. Immunity 2015;40[6]:815. https://doi.org/10.1016/j.immuni.2014.05.012
[3] Del Campo-Moreno R, Alarcón-Cavero T, D’auria G, Delgado-Palacio S, Ferrer-Martínez M. Microbiota en la salud humana: técnicas de caracterización y transferencia. Enfermedades Infecciosas y Microbiología Clínica 2018;36[4]:241. https://doi.org/10.1016/j.eimc.2017.02.007
[4] Wang H, Wei C, Min L, Zhu L. Good or bad: gut bacteria in human health and diseases. Biotechnology & Biotechnological Equipment 2018;32[5]:1075. https://doi.org/10.1080/13102818.2018.1481350
[5] Merino Rivera JA, Taracena Pacheco S, Díaz Greene EJ, Rodríguez Weber FL. Microbiota intestinal: el órgano olvidado. Acta Médica Grupo Ángeles 2021;19[1]:92. https://doi.org/10.35366/98577
[6] Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides fromPseudomonas. FEMS Microbiol Rev 2014;38[4]:523. https://doi.org/10.1111/1574-6976.12079
[7] Morrison L, Zembower TR. Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America 2020;30[4]:619. https://doi.org/10.1016/j.giec.2020.06.004
[8] Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022;399(10325):629. https://doi.org/10.1016/S0140-6736(21)02724-0
[9] World Health Organization. Un informe pone de relieve el aumento de la resistencia a los antibióticos en infecciones bacterianas que afectan al ser humano y la necesidad de mejorar los datos al respecto. 2022; Disponible en: https://www.who.int/es/news/item/09-12-2022-report-signals-increasing-resistance-to-antibiotics-in-bacterial-infections-in-humans-and-need-for-better-data.
[10] Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022 -09-29;399(10325):629. https://doi.org/10.1016/S0140-6736(21)02724-0
[11] Dadgostar P. Antimicrobial Resistance: Implications and Costs. IDR 2019;12:3903. https://doi.org/10.2147/IDR.S234610
[12] Behrens HM, Six A, Walker D, Kleanthous C. The therapeutic potential of bacteriocins as protein antibiotics. Emerging Topics in Life Sciences 2017;1[1]:65. https://doi.org/10.1042/ETLS20160016
[13] Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022 /2;11[2]:200. https://doi.org/10.3390/antibiotics11020200
[14] Fumagalli D. Antimicrobial Resistance, One Health Interventions and the Least Restrictive Alternative Principle. Public Health Ethics 2024;17[1-2]:5–10. https://doi.org/10.1093/phe/phae004
[15] Sigal N, Lichtenstein-Wolfheim R, Schlussel S, Azulay G, Borovok I, Holdengraber V, et al. Specialized Listeria monocytogenes produce tailocins to provide a population-level competitive growth advantage. Nat Microbiol 2024;9[10]:2727–2737. https://doi.org/10.1038/s41564-024-01793-9
[16] Xia J, Ge C, Yao H. Antimicrobial peptides: An alternative to antibiotic for mitigating the risks of Antibiotic resistance in aquaculture. Environmental Research;251:118619. https://doi.org/10.1016/j.envres.2024.118619
[17] Sen D, Mukhopadhyay P. Antimicrobial resistance [AMR] management using CRISPR-Cas based genome editing. Gene and Genome Editing 2024;7:100031. https://doi.org/10.1016/j.ggedit.2024.100031
[18] Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S, Huson DH, et al. Phage tail-like particles are versatile bacterial nanomachines – A mini-review. Journal of Advanced Research 2019;19:75–84. https://doi.org/10.1016/j.jare.2019.04.003
[19] Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020;8[5]:639. https://doi.org/10.3390/microorganisms8050639
[20] Ghequire MGK, Mot RD. The Tailocin Tale: Peeling off Phage Tails. Trends in Microbiology 2015;23[10]:587–590. https://doi.org/10.1016/j.tim.2015.07.011
[21] Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis 2019;128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002
[22] Scholl D. Phage Tail-Like Bacteriocins. Annual Review of Virology. 2017;4; 453-467. https://doi.org/10.1146/annurev-virology-101416-041632
[23] Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021;19[11]:726–739. https://doi.org/10.1038/s41579-021-00569-w
[24] Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiology Reviews 2018;42[6]:805–828. https://doi.org/10.1093/femsre/fuy033
[25] Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M, et al. Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics 2020;9[9]:553. https://doi.org/10.3390/antibiotics9090553
[26] Heredia-Castro PY, Hérnández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B. Bacteriocinas De Bacterias Ácido Lácticas: Mecanismos De Acción Y Actividad Antimicrobiana Contra Patógenos En Quesos. Interciencia 2017;42[6]:340–346. https://www.redalyc.org/journal/339/33951621002/html/
[27] Najjari A, Mejri H, Jabbari M, Sghaier H, Cherif A, Ouzari H, et al. Halocins, Bacteriocin-Like Antimicrobials Produced by the Archaeal Domain: Occurrence and Phylogenetic Diversity in Halobacteriales. Extremophilic Microbes and Metabolites - Diversity, Bioprospecting and Biotechnological Applications: IntechOpen 2020. http://doi.org/10.5772/intechopen.94765
[28] Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews 2021;45[1]:fuaa039. https://doi.org/10.1093/femsre/fuaa039.
[29] Yao GW, Duarte I, Le TT, Carmody L, Lipuma JJ, Young R, et al. A Broad-Host-Range Tailocin from Burkholderia cenocepacia. Appl Environ Microbiol 2017;83[10];14-16. https://doi.org/10.1128/AEM.03414-16
[30] Blasco L, De Aledo MG, Ortiz-Cartagena C, Blériot I, Pacios O, López M, et al. Study of 32 new phage tail-like bacteriocins [pyocins] from a clinical collection of Pseudomonas aeruginosa and of their potential use as typing markers and antimicrobial agents. Sci Rep 2023 -01-03;13[1]. https://doi.org/10.1038/s41598-022-27341-1
[31] Backman T, Burbano HA, Karasov TL. Tradeoffs and constraints on the evolution of tailocins. Trends in Microbiology 2024;32[11];1084-1095. https://doi.org/10.1016/j.tim.2024.04.001
[32] Gebhart D, Lok S, Clare S, Tomas M, Stares M, Scholl D, et al. A Modified R-Type Bacteriocin Specifically Targeting Clostridium difficile Prevents Colonization of Mice without Affecting Gut Microbiota Diversity. mBio 2015;6[2]:2368. https://doi.org/10.1128/mbio.02368-14
[33] Carim S, Azadeh AL, Kazakov AE, Price MN, Walian PJ, Lui LM, et al. Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. The ISME Journal 2021;15[8]:2289. https://doi.org/10.1038/s41396-021-00921-1
[34] Woudstra C, Sørensen AN, Sørensen MCH, Brøndsted L. Strategies for developing phages into novel antimicrobial tailocins. Trends in Microbiology 2024;32[10];996-1006. https://doi.org/10.1016/j.tim.2024.03.003
[35] Fraser A, Prokhorov NS, Pettitt BM, Scheuring S, Leiman PG. Quantitative description of a contractile macromolecular machine. Science Advances 2021;7[24];. https://doi.org/10.1126/sciadv.abf9601
[36] Ge P, Scholl D, Leiman PG, Yu X, Miller JF, Zhou ZH. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol 2015;22[5]:377–382. https://doi.org/10.1038/nsmb.2995
[37] Zinke M, Schröder GF, Lange A. Major tail proteins of bacteriophages of the order Caudovirales. Journal of Biological Chemistry 2022;298[1]. https://doi.org/10.1016/j.jbc.2021.101472
[38] Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, et al. A phage tail–like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria. Science 2024;384[6701]:eado0713. https://doi.org/10.1126/science.ado0713
[39] Dorosky RJ, Yu JM, Pierson LS, Pierson EA. Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots. Applied and Environmental Microbiology 2017;83[15].https://doi.org/10.1128/AEM.00706-17
[40] Booth SC, Smith WPJ, Foster KR. The evolution of short- and long-range weapons for bacterial competition. Nat Ecol Evol 2023;7[12]:2080. https://doi.org/10.1038/s41559-023-02234-2
[41] Lin L, Lin L, Thanbichler M, Schlimpert S. The expanding universe of contractile injection systems in bacteria. Current Opinion in Microbiology 2024;79. https://doi.org/10.1016/j.mib.2024.102465
[42] Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Front Microbiol 2017;8:1108. https://doi.org/10.3389/fmicb.2017.01108
[43] Woudstra C, Brøndsted L. Producing Tailocins from Phages Using Osmotic Shock and Benzalkonium Chloride. PHAGE 2023;4[3]:136. https://doi.org/10.1089/phage.2023.0014
[44] Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, et al. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomedicine & Pharmacotherapy 2022;155. https://doi.org/10.1016/j.biopha.2022.113720
[45] Borowicz Marcin, Sobolewska Marta. Soft rot pathogen Dickeya dadantii 3937 produces tailocins resembling the tails of Peduovirus P2. Front. Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1307349
[46] Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023;14. https://doi.org/10.3389/fmicb.2023.1264877
[47] Dorosky RJ, Yu JM, Pierson LS, Pierson EA. Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots. Applied and Environmental Microbiology 2017;83[15].https://doi.org/10.1128/AEM.00706-17
[48] Becker Y, Patz S, Kühn-Institut J, Berger B, Werner S, Hoppe B, et al. Bacteria producing contractile phage tail-like particles [CPTPs] are promising alternatives to conventional pesticides. 2022;74[03-04];85-93. http://doi.org/10.5073/JfK.2022.03-04.06
[49] Ge P, Scholl D, Prokhorov NS, Avaylon J, Shneider MM, Browning C, et al. Action of a minimal contractile bactericidal nanomachine. Nature 2020;580[7805]:658–662. https://doi.org/10.1038/s41586-020-2186-z
[50] Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, et al. Atomic structures of a bacteriocin targeting Gram-positive bacteria. Nat Commun 2024;15[1]:7057. https://doi.org/10.21203/rs.3.rs-4007122/v1
[51] Green ER, Mecsas J. Bacterial Secretion Systems – An overview. Microbiol Spectr 2016;4[1]. https://doi.org/10.1128/microbiolspec.vmbf-0012-2015
[52] Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. Microbiology 2023;169[4]:001326. https://doi.org/10.1099/mic.0.001326
[53] Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends in Microbiology 2016;24[1]:51–62. https://doi.org/10.1016/j.tim.2015.10.005
[54] Saha S, Ojobor CD, Li ASC, Mackinnon E, North OI, Bondy-Denomy J, et al. F-Type Pyocins Are Diverse Noncontractile Phage Tail-Like Weapons for Killing Pseudomonas aeruginosa. J Bacteriol 2023;205[6]. https://doi.org/10.1128/jb.00029-23
[55] Belcaid, M., Bergeron, A. & Poisson, G. The evolution of the tape measure protein: units, duplications and losses. BMC Bioinformatics 2011:12[9]. https://doi.org/10.1186/1471-2105-12-S9-S10.
[56] Acedo JZ, Chiorean S, Vederas JC, Van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiology Reviews 2018;42[6]:805-828. https://doi.org/10.1093/femsre/fuy033
[57] Ishii T, Tsuchida N, Hemelda NM, Saito K, Bao J, Watanabe M, et al. Rhizoviticin is an alphaproteobacterial tailocin that mediates biocontrol of grapevine crown gall disease. The ISME Journal 2024;18[1]. https://doi.org/10.1093/ismejo/wrad003
[58] Kumariya S, Mehra R, Kumariya R. Regulations in Antimicrobial Drug Development: Challenges and New Incentives. Emerging Modalities in Mitigation of Antimicrobial Resistance Cham 2022;159–177. https://doi.org/10.1007/978-3-030-84126-3_8
[59] Park KU, Jeong SH, Uh Y, Shin JH, Kim H, Kim D, et al. Standardization of an antimicrobial resistance surveillance network through data management. Front Cell Infect Microbiol 2024;14. https://doi.org/10.3389/fcimb.2024.1411145
[60] Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, et al. CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. J Clin Microbiol 2018;56[4]. https://doi.org/10.1128/jcm.01934-17
[61] Humphries RM, Kircher S, Ferrell A, Krause KM, Malherbe R, Hsiung A, et al. The Continued Value of Disk Diffusion for Assessing Antimicrobial Susceptibility in Clinical Laboratories: Report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. Journal of Clinical Microbiology 2019;56[8]. https://doi.org/10.1128/jcm.00437-18
[62] Fernandez M, Godino A, Príncipe A, Morales GM, Fischer S. Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. Journal of Biotechnology 2017;256[20];13-20. https://doi.org/10.1016/j.jbiotec.2017.07.002
[63] Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024;16[1]. https://doi.org/10.1080/19490976.2024.2337312
[64] Ghequire MGK, Dillen Y, Lambrichts I, Proost P, Wattiez R, De Mot R. Different Ancestries of R Tailocins in RhizosphericPseudomonasIsolates. Genome Biol Evol 2015;7[10];2810-2828. https://doi.org/10.1093/gbe/evv184
[65] Scholl D, Martin DW. Antibacterial Efficacy of R-Type Pyocins towards Pseudomonas aeruginosa in a Murine Peritonitis Model. Antimicrob Agents Chemother 2008;52[5]:1647. https://doi.org/10.1128/aac.01479-07
[66] Baltrus DA, Clark M, Hockett KL, Mollico M, Smith C, Weaver S. Prophylactic Application of Tailocins Prevents Infection by Pseudomonas syringae. Phytopathology 2022;112[3];561-566. https://doi.org/10.1094/PHYTO-06-21-0269-R
[67] Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016;14[5];320–330. https://doi.org/10.1038/nrmicro.2016.34
[68] Weaver SL, Zhu L, Ravishankar S, Clark M, Baltrus DA. Interspecies killing activity of Pseudomonas syringae tailocins. Microbiology 2022;168[11]. https://doi.org/10.1099/mic.0.001258
[69] Heiman CM, Maurhofer M, Calderon S, Dupasquier M, Marquis J, Keel C, et al. Pivotal role of O-antigenic polysaccharide display in the sensitivity against phage tail-like particles in environmental Pseudomonas kin competition. ISME J 2022;16[7];1683–1693. https://doi.org/10.1038/s41396-022-01217-8
[70] de la Fuente GC. Factores de virulencia de Pseudomonas aeruginosa de origen clínico, animal, alimentario y ambiental. Universidad de la Rioja; 2024. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=333139
[71] Jurado-Martín I, Sainz-Mejías M, Mcclean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. IJMS 2021;22[6];3128. https://doi.org/10.3390/ijms22063128
[72] Elfadadny A, Ragab RF, Alharbi M, Badshah F, Ibáñez-Arancibia E, Farag A, et al. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol 2024;15. https://doi.org/10.3389/fmicb.2024.1374466
[73] Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sig Transduct Target Ther 2022;7[1]. https://doi.org/10.1038/s41392-022-01056-1
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Hechos Microbiológicos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.