Evaluation of bioestimulation using a microbial consortium to PCB degradation in soil

Authors

  • Nancy johanna Pino R. University of Antioquia
  • Luisa Munera University of Antioquia
  • Gustavo Peñuela University of Antioquia

DOI:

https://doi.org/10.17533/udea.hm.323246

Keywords:

bioremediation, PCB, biostimulation, biodegradation

Abstract

In  this  work  two  microorganisms  able  to  degrade  polychlorinated  biphenyl  (PCB)  were  isolated  from  contaminated soil. The isolated microorganisms were identified  as Pseudomonas  spp.  and  Stenotrophomonasspp.  In  order  to  evaluate  the  efficiency  of  a bioaugmentation  strategy  for  PCB  contamination,  PCB   degrading   microorganisms   were   inoculated   into  soil  microcosms.  PCB  congeners  44,  66,  118,  138,  153,  170  and  180  were  monitored  during  the  bioremediation  assay.  In  liquid  culture  using  PCB  as sole carbon source, removal percentages of  37%, 32,6%,  and  15%  were  obtained  for  PCB  44,  66  and  118 respectively. Bioaugmentation assays were carried out using sterilized and non-sterilized soil, the highest removal percentages for all congeners were observed in  sterilized  soil,  demonstrating  the  effect  of   native  microorganism on the added inoculum.

|Abstract
= 573 veces | PDF 16-24 (ESPAÑOL (ESPAÑA))
= 1004 veces|

Downloads

Download data is not yet available.

Author Biographies

Nancy johanna Pino R., University of Antioquia

School of Microbiology, University of Antioquia. Diagnosis and Pollution Control Group, Faculty of Engineering, University Research Center, University of Antioquia.

Luisa Munera, University of Antioquia

School of Microbiology, University of Antioquia.

Gustavo Peñuela, University of Antioquia

Diagnosis and Pollution Control Group, Faculty of Engineering, University Research Center, University of Antioquia.

References

Vasilyeva G, Strijakova E. Bioremediation of Soils and Sediments Contaminated by Polychlorinated Bi-phenyls. Microbiology 2007; 76 :639-53

Gomes H, Dias-Ferreira C, Ribeiro A. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 2013; 445-6:237-60

Aken BV, Correa PA, Schnoor JL. Phytoremediation of polychlorinated biphenyls: new trends and promi-ses. Environ Sci Technol 2009; 44: 2767-76

Hornbuckle K, Robertson L. Polychlorinated Bi-phenyls (PCBs): Sources, Exposures, Toxicities. Environ Sci Technol 2010; 44:2749-51

Wolska L, Mechlińska A, Rogowska J, Namieśnik J.Polychlorinated biphenyls (PCBs) in bottom sedi-ments: Identification of sources. Chemosphere 2014; 111:151-6

Xu L, Teng Y, Li Z, Norton J, Luo Y. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inocu-lum. Sci Total Environ 2010; 408:1007-13

Fiedler H, Abad E, Van Bavel B, De Boer J, Bogdal C, Malisch R. The need for capacity building and first results for the Stockholm Convention Global Monito-ring Plan. Trend Anal Chem 2013; 46:72-84

Passatore L, Rossetti S, Juwarkar A, Massacci A. Phytoremediation and bioremediation of polychlorina-ted biphenyls (PCBs): State of knowledge and research perspectives. J Hazard Mater 2014; 278:189-202

Hornbuckle K, Robertson L. Polychlorinated Biphen-yls (PCBs): Sources, Exposures, Toxicities. Environ Sci technol 2010; 44:2749-275110. Giesy J, Kannan K. Dioxin-like and non-dioxin like effects of polychlorinated biphenyls: Implications for risk assessment. Lakes & Reservoirs: Research& Mana-gement 2002; 7:139-181

Pu X, Lee L, Galinsky R, Carlson G. Bioavailability of 2,3’ pentachlorobiphenyl (PCB118) and 2,2’ model and a physiologically based extraction test. Toxicolo-gy 2006; 217:14-21

Dorneles P, Sanz P, Gauthier E, Alexandre F, Caro-lina A, Bertozzi P, Martínez M, et al. High accumu-lation of PCDD, PCDF, and PCB congeners in marine mammals from Brazil: A serious PCB problem. Sci Total Environ 2013; 463-464:309-18

Rajaei F, Bahramifar N, Esmaili Sari A, Ghasempou-ri M, Savabieasfahani M. PCBs and Organochlorine Pesticides in Ducks of Fereydoon-kenar Wildlife. Bull Environ Contam Toxicol 2010; 84:577-81

Brown T, Kuzyk Z, Stow J, Burgess N, Solomon S, Sheldon T, et al. Effects-based marine ecological risk assessment at a polychlorinated biphenyl-contamina-ted site in Saglek, Labrador, Canada. Environ Toxicol Chem 2013; 32:453-467

Vasilyeva G, Strijakova E. Bioremediation of Soils and Sediments Contaminated by Polychlorinated Bi-phenyls. Microbiology 2007; 76:639-653

Tandlich R, Brezná B, Dercová K. The effect of ter-penes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere 2001; 44:1547-55

Dudášová H, Lukáčová L, Murínová S, Puškárová A, Pangallo D, Dercová K. Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. J Basic Mi-crobiol 2014; 54:253-60

Fagervold SK, Watts JEM, May HD, Sowers KR. Effects of bioaugmentation on indigenous PCB de-chlorinating activity in sediment microcosms. Water Res 2011; 45:3899-907

Mrozik A, Miga S, Piotrowska-Seget Z. Enhance-ment of phenol degradation by a soil bioaugmenta-tion with Pseudomonas spp. JS150. J Appl Microbiol 2011; 111:1357-70

Guimarães BCM, Arends JBA, van der Ha D, Van de Wiele T. Microbial services and their management: recent progresses in soil bioremediation technology. Appl Soil Ecol 2010; 46:157-67

Ionescu M, Beranovaa K, Dudkovaa V, Kochanko-vac L, Demnerovaa K, Macekb T, et al. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphen-yls. Int Biodeterior Biodegradation 2009; 63:667-72

M AV DT. Ministerio de Ambiente, Vivienda y Desarro-llo Territorial. Inventario preliminar de Compuestos Bifenilos Policlorados- PCB existentes en Colombia, Informe final; 2006.

Pham T, Tu Y, Sylvestre M. Remarkable abilities of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl Environ Microb 2012; 78:35-60

Dercova K, Cicmanova J, Lovecka P, Demnerova K, Mackova M, Hucko P, et al. Isolation and identifica-tion of PCB-degrading microorganisms from conta-minated sediments. Int Biodeterior Biodegradation 2008; 62:219-25

EPA. Method 8082A Polychlorinated Biphenyls (PCBs)24by Gas Chromatography 2007

Randall J, Goldberg N, Kemp J, Radionenko M, French M, Olsen M, et al. SGenetic Analysis of a Novel Xylella fastidiosa Subspecies Found in the Southwestern United States. Appl Environ Microb 2009; 75: 5631-8

Li Y, Liang F, Zhu Y, Wang F. Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soil Sci 2013;13:925-31

Salihoglu G, Salihoglu N, Aksoy E, Tasdemir Y. Spatial and temporal distribution of polychlorinated biphenyl (PCB) concentrations in soils of an industria-lized city in Turkey. J Environ Manage 2011; 92:724-32

Fairey J, Wahman D, Lowry G. Effects of natural orga-nic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications. J En-viron Qual 2010; 39:1359-68

Backe C, Cousins IT, Larsson P. PCB in soils and es-timated soil-air exchange f uxes of selected PCB con-geners in the south of Sweden. Environ Pollut 2004; 128: 59-72

Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecu-lar features. J Biosci Bioeng 2008;105:433-49

Published

2016-06-20

How to Cite

Pino R., N. johanna ., Munera, L., & Peñuela, G. . (2016). Evaluation of bioestimulation using a microbial consortium to PCB degradation in soil. Hechos Microbiológicos, 5(1), 16–24. https://doi.org/10.17533/udea.hm.323246

Issue

Section

Artículos de investigación original