Formation of human neutrophil extracellular traps in vitro: description of a method

Authors

  • Lizet Jazmín Pérez Zapata University of Antioquia
  • Ana María Trejos Ramírez University of Antioquia
  • Andres Augusto Arias Sierra University of Antioquia
  • Juan Álvaro López Quintero University of Antioquia

DOI:

https://doi.org/10.17533/udea.hm.v10n1a01

Keywords:

standardization, neutrophils, NETs, Phorbol 12-myristate 13-acetate, extracellular neutrophil traps, netosis

Abstract

Introduction: Neutrophil Extracellular Traps (NET) are net-shaped structures, composed of DNA and granule proteins, which are released by neutrophil into the extracellular space in response to different stimuli. NETosis is described as a microbicide mechanism, which destroys microorganisms or inhibits their growing.

Objective: To describe a process to induce, visualize and quantify the formation of NET in human neutrophils.

Methodology: peripheral blood neutrophils were isolated from healthy individuals. NET production was induced using different concentrations of PMA at specific times. DNA release into the extracellular space was quantified by spectrofluorimetry and NET morphology was evaluated by fluorescence microscopy. Statistical analyzes were performed using SPSS and GraphPad Prism programs.

Results and conclusions: this study describes a method used to induce NET in human neutrophils, which is comparable with other studies reported in the scientific literature. These results can be applied in essays that seek to evaluate NET formation in vitro and expect it will be helpful to researchers who wish to study this cellular process.

|Abstract
= 4668 veces | PDF (ESPAÑOL (ESPAÑA))
= 4901 veces|

Downloads

Author Biographies

Lizet Jazmín Pérez Zapata, University of Antioquia

Primary Immunodeficiencies Group, Faculty of Medicine, University of Antioquia.

Ana María Trejos Ramírez, University of Antioquia

Primary Immunodeficiencies Group, Faculty of Medicine, University of Antioquia.

Andres Augusto Arias Sierra, University of Antioquia

Primary Immunodeficiencies Group, Faculty of Medicine, University of Antioquia.

Juan Álvaro López Quintero, University of Antioquia

Primary Immunodeficiencies Group, Faculty of Medicine, University of Antioquia.

References

Kobayashi Y. Neutrophil biology: an update. Excli J. 2015;14:220-227. doi:10.17179/excli2015-102

Brinkmann V, Reichar U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracel-lular traps kill bacteria. Science. 2004;303:1532-1535. doi:10.1126/science.1092385303/5663/1532

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schul-ze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231-241. doi:jcb.200606027 [pii]10.1083/jcb.200606027

Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223. doi:DOI

1146/annurev.immunol.23.021704.115653

Guimaraes-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, et al. Leishmania amazonen-sis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci. 2009;106:6748-6753. doi:10.1073/pnas.09002261060900226106

Kumar S, Gupta E, Kaushik S, Jyoti A. Neutrophil Extracellular Traps: Formation and Involvement in Disease Progression. Iran J Allergy Asthma Immunol. 2008;17:208-220.

Knight JS, Kaplan MJ. Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr Opin Rheumatol. 2012;24:441-450. doi:10.1097/BOR.0b013e3283546703

Pinegin B, Vorobjeva N, Pinegin V. Neutrophil ex-tracellular traps and their role in the development of chronic inflammation and autoimmunity. Au-toimmun Rev. 2015;14:633-640. doi:10.1016/j.aut-rev.2015.03.002

Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may pro-mote thromboinflammation and the thrombophilic state associated with the disease. Annals of the Rheu-matic Diseases. 2014;73(10):1854-63. doi:10.1136/an-nrheumdis-2013-203430

Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I,et al. Myeloperoxidase is re-quired for neutrophil extracellular trap formation: im-plications for innate immunity. Blood. 2011;117;953-959. doi:10.1182/blood-2010-06-290171

Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutro-phil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71:4179-4194. doi:10.1007/s00018-014-1683-3.

Remijsen Q, Berghe TV, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, et al. Neutrophil extra-cellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21:290-304. doi:10.1038/cr.2010.150cr2010150

Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their pres-ence in preeclampsia. Hum Immunol. 2005;66:1146-1154. doi:S0198-8859(05)00450-7 [pii]10.1016/j.hu-mimm.2005.11.003

Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187:490-500. doi:10.4049/jimmu-nol.1100123 jimmunol.1100123

Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2016;185:7413-7425. doi:10.4049/jimmunol.1000675 jimmu-nol.1000675

Bianchi M, Hakkim A, Brinkmann V, Siler U, Se-ger RA, Zychlinsky A, et al. Restoration of NET formation by gene therapy in CGD controls asper-gillosis. Blood. 2009;114:2619-2622. doi:10.1182/blood-2009-05-221606 blood-2009-05-221606

Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, Thywißen A, et al. Production of ex-tracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010;6(4):e1000873. doi:10.1371/jour-nal.ppat.1000873

Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermo-silla C. Neutrophil extracellular trap formation as in-nate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol Immunopathol. 2010;133: 1-8. doi:10.1016/j.vetimm.2009.06.012 S0165-2427(09)00210-4

Saitoh T, Komano J, Saitoh Y, Misawa T, Takaha-ma M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immu-nodeficiency virus-1. Cell Host Microbe. 2012;12:109-116. doi:10.1016/j.chom.2012.05.015 S1931-3128(12)00201-6

Wardini AB, Guimaraes-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C, et al. Char-acterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol. 2010;91:259-264. doi:10.1099/vir.0.014613-0 vir.0.014613-0

Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205-213. doi:10.1083/jcb.200806072 jcb.200806072

Papayannopoulos V, Metzler KD, Hakkim A, Zychl-insky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677-691. doi:10.1083/jcb.201006052

Metzler K, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-contain-ing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports. 2014;8:883-896. doi:10.1016/j.celrep.2014.06.044

Coelho LP, Pato C, Friães A, Neumann A, von Köc-kritz-Blickwede M, Ramirez M, et al. Automatic determination of NET (neutrophil extracellular traps) coverage in fluorescent microscopy images. Bioinfor-matics. 2015;31: 2364-2370. doi:10.1093/bioinformat-ics/btv156

Rebernick R, Fahmy L, Glover C, Bawadekar M, Shim D, Holmes CL, et al. DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neu-trophil Extracellular Traps in Fluorescent Microscope Images. Biol Proced Online. 2018;20(7). doi:10.1186/s12575-018-0072-y

Ginley BG, Emmons T, Lutnick B, Urban CF, Segal BH, Sarder P. Computational detection and quantifi-cation of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy. Sci Rep. 2017;7:17755. doi:10.1038/s41598-017-18099-y

Zhao W, Fogg DK, Kaplan MJ. A novel image-based quantitative method for the characterization of NETosis. J Immunol Methods. 2015;423:104-110. doi:10.1016/j.jim.2015.04.027

Najmeh, S, Cools-Lartigue J, Giannias B, Spicer J, Ferri LE. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. JoVE. 2015;98. doi:10.3791/52687

Gavillet M. Martinod K, Renella R, Harris C, Shapi-ro NI, Wagner DD, et al. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. American Journal of Hematology. 2015;90(12):1155-1158. doi:10.1002/ajh.24185

Vong L, Sherman PM, Glogauer M. Quantification and visualization of neutrophil extracellular traps (NETs) from murine bone marrow-derived neutrophils. Methods Mol Biol. 2013;1031:41-50. doi:10.1007/978-1-62703-481-4_5

Quinn MT, Deleo F Bokoch GM. in Methods in mo-lecular biology. Totowa: Humana Press; 2007.

Hu Y. Isolation of human and mouse neutrophils ex vivo and in vitro. Methods in Molecular Biology. 2012;844:101-113. doi:10.1007/978-1-61779-527-5_7

Lundqvist H, Follin P, Khalfan L, Dahlgren C. Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told. J Leukoc Biol. 1996;59:270-279.

Karlsson A, Nixon JB, McPhail LC. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: de-pendent or independent of phosphatidylinositol 3-ki-nase. J Leukoc Biol. 2000;67:396-404.

Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M. The Impact of Various Reactive Oxygen Species on the Formation of Neutrophil Extracel-lular Traps. Mediat Inflamm. 2012. doi:Artn 8491

10.1155/2012/84913636. Bjornsdottir H, Welin A, Michaëlsson E, Osla V, Berg S, Christenson K, et al. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radical Bio Med. 2015;89:1024-1035. doi:10.1016/j.freerad-biomed.2015.10.398

Keshari RS, Verma A, Barthwal MK, Dikshit M. Re-active oxygen species-induced activation of ERK and p38 MAPK mediates PMA-inducedNETs release from human neutrophils. Journal of Cellular Biochemistry. 2013;114: 532-540. doi:10.1002/jcb.24391

Parker H, Dragunow M, Hampton M, Kettle AJ, Win-terbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap for-mation differ depending on the stimulus. J Leukoc Biol. 2012; 92:841-849. doi:10.1189/jlb.1211601

Arai Y, Nishinaka Y, Arai T, Morita M, Mizugishi K, Adachi S, et al. Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochem Biophys Res Commun. 2014;443:556-561. doi:10.1016/j.bbrc.2013.12.007

Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neu-trophil extracellular trap induction requires mobili-zation of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PloS One. 2014:9(5). e97088. doi:10.1371/journal.pone.009708841. Köckritz-Blickwede M, Chow O, Ghochani M, Chow O, Ghochani M, Nizet V. Visualization and functional evaluation of phagocyte extracellular traps. Methods in Microbiology. 2010;37:139-160.

Rodriguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, Lopez-Villegas EO, Sanchez-Gar-cia FJ. Metabolic requirements for neutrophil extracel-lular traps formation. Immunology. 2015;145:213-224. doi:10.1111/imm.12437

Urban CF, Ermert D, Schmid M, Abu-Abed U, Goos-mann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5(10). e1000639. doi:10.1371/jour-nal.ppat.1000639

Krautgartner WD, Klappacher M, Hannig M, Obermayer A, Hartl D, Marcos V, et al. Fibrin mimics neutrophil extracellular traps in SEM. Ultrastructural Pathology. 2010;34:226-231. doi:10.3109/01913121003725721

Lebaron P, Catala P, Parthuisot N. Effectiveness of SY-TOX Green stain for bacterial viability assessment. Ap-plied and Environmental Microbiology. 1998;64:2697-2700.

Marin-Esteban, V, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil ex-tracellular traps that kill bacteria and damage hu-man enterocyte-like cells. Infection and Immunity. 2012;80(5):1891-9. doi:10.1128/IAI.00050-12

Barrientos L, Marin-Esteba V, de Chaisemartin L, Sandre C, Bianchini E, Nicolas V, et al. An improved strategy to recover large fragments of functional hu-man neutrophil extracellular traps. Frontiers in Immu-nology. 2013;4:66. doi:10.3389/fimmu.2013.00166

Brinkmann V, Goosmann C, Kuhn LI, Zychlinsky A. Automatic quantification of in vitro NET formation. Frontiers in Immunology; 2012;3:413. doi:10.3389/fimmu.2012.00413

Gonzalez AS, Bardoel BW, Harbort CJ, Zychlins-ky A. Induction and quantification of neutrophil extracellular traps. Methods in Molecular Biology. 2014;1124:307-318. doi:10.1007/978-1-62703-845-4_20

Published

2020-01-08

How to Cite

Pérez Zapata, L. J., Trejos Ramírez, A. M., Arias Sierra, A. A., & López Quintero, J. Álvaro. (2020). Formation of human neutrophil extracellular traps in vitro: description of a method. Hechos Microbiológicos, 10(1-2). https://doi.org/10.17533/udea.hm.v10n1a01

Issue

Section

Artículos de investigación original