Identificación de un modelo ARIMA cuando existen observaciones faltantes
DOI:
https://doi.org/10.17533/udea.le.n47a4935Abstract
Un supuesto común en el análisis de series de tiempo es que las series que van a ser estudiadas disponen de información para cada momento de tiempo en el periodo que se va analizar. Sin embargo, con frecuencia ocurre que faltan datos en la serie, o que algunos de ellos son erróneos. En la literatura de Análisis Series de Tiempo, en particular en la de los procesos ARIMA (Box y Jenkins, 1976), se han propuesto diferentes métodos para estimar estas observaciones, pero la mayoría de ellos supone que el modelo es conocido o que las observaciones son tales que han permitido identificarlo. Este documento presenta una metodología relativamente simple que permite estimar las observaciones faltantes y simultáneamente identificar el modelo ARIMA que generó una serie de tiempo.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This page, by Universidad de Antioquia, is licensed under a Creative Commons Attribution License.
Authors who publish with this journal agree to retain copyright and grant the journal right of first publication, with the article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License allowing others to share it as long as they acknowledge its authorship and original publication in this journal.
Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), provided that these arrangements be not for profit and the journal be acknowledged as the original source of publication.
Authors are permitted and encouraged to post their papers online (e.g., in institutional repositories or on their websites), as it can lead to valuable exchanges as well as greater citation of the published work.