Calcul de la fonction de production à l'aide de l'entropie : un modèle issu de l'éconophysique

Auteurs-es

DOI :

https://doi.org/10.17533/udea.le.n103a356738

Mots-clés :

econophysique, entropie économique, fonction Cobb-Douglas, production, microéconomie

Résumé

D'un point de vue économique, les problèmes associés à la production nécessitent un modèle pour l'estimer. La façon la plus courante d'effectuer ces estimations est traditionnellement la fonction de production Cobb-Douglas, issue de l'ajustement des moindres carrés. Cependant, plusieurs auteurs ont proposé d'autres façons d'estimer la production en se basant sur la relation entre les problèmes économiques et les problèmes thermodynamiques. Notre article montre une façon de calculer la fonction de production à travers l'entropie, qui considère explicitement les contributions du travail et du capital dans l'entropie de la fonction de production. Nous appliquons ainsi le modèle aux données présentées dans l'étude Cobb-Douglas de la production manufacturière aux États-Unis. Les résultats décrivent parfaitement les données de production. En outre, ils indiquent la nécessité d'estimer la constante de Boltzmann dans le modèle économique et présentent une proposition pour obtenir sa valeur.

|Résumé
= 242 veces | PDF (ENGLISH)
= 263 veces|

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Isabel Cristina Betancur, Universidad de Medellín

Professor at Universidad de Medellín, Faculty of Economic Sciences, Medellín, Colombia.

Efraín Arango-Sánchez, Universidad de Medellín

Professor at Universidad Autónoma Latinoamericana, Faculty of Economic Sciences, Medellín, Colombia

Álvaro Hernán Bedoya-Calle, Universidad de Medellín

Independent Scholar

Francisco J. Caro- Lopera, Universidad de Medellin

Professor at Universidad de Medellín, Faculty of Basic Sciences, Medellín, Colombia

Éver Alberto Velásquez Sierra, Universidad de Medellín

Professor at Universidad de Medellín, Faculty of Basic Sciences, Medellín, Colombia

Références

Abbas, A. E. (2006). Maximum Entropy Utility. Operations Research, 54(2), 277-290. https://doi.org/10.1287/opre.1040.0204

Adekanye, T., & Oni, K. C. (2022). Comparative Energy Use in Cassava Production under Different Farming Technologies in Kwara State of Nigeria. Environmental and Sustainability Indicators, 14, 100173. https://doi.org/10.1016/j.indic.2022.100173

Adkins, G. S., Nappi, C. R., & Witten, E. (1983). Static Properties of Nucleons in the Skyrme Model. Nuclear Physics B, 228(3), 552-566. https://doi.org/10.1016/0550-3213(83)90559-X

Alam, M. J., Ahmed, M., & Begum, I. A. (2017). Nexus between Non-Renewable Energy Demand and Economic Growth in Bangladesh: Application of Maximum Entropy Bootstrap approach. Renewable and Sustainable Energy Reviews, 72, 399-406. https://doi.org/10.1016/j.rser.2017.01.007

Askar, S. S., & Al-Khedhairi, A. (2020). Dynamic Effects Arise Due to Consumers’ Preferences Depending on Past Choices. Entropy, 22(2), 173. https://doi.org/10.3390/e22020173

Autchariyapanitkul, K., Srisirisakulchai, J., Kunasri, K., & Ayusuk, A. (2017). Technical Efficiency in Rice Production at Farm Level in Northern Thailand: A Stochastic Frontier with Maximum Entropy Approach. Thai Journal of Mathematics, 121-132. https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/650

Backus, D., Chernov, M., & Zin, S. (2014). Sources of Entropy in Representative Agent Models. The Journal of Finance, 69(1), 51-99. https://doi.org/10.1111/jofi.12090

Beale, P. D., & Pathria, R. K. (2021). Statistical Mechanics (Third Edition). Elsevier.

Bryant, J. (2007). A Thermodynamic Theory of Economics. International Journal of Exergy, 4(3), 302-337. https://doi.org/10.1504/IJEX.2007.013396

Chakpitak, N., Maneejuk, P., Chanaim, S., & Sriboonchitta, S. (2018). Thailand in the Era of Digital Economy: How Does Digital Technology Promote Economic Growth? In V. Kreinovich, S., Sriboonchitta & N. Chakpitak, (Eds.). Predictive Econometrics and Big Data. TES 2018. Studies in Computational Intelligence, vol 753 (pp. 350-362). Springer. https://doi.org/10.1007/978-3-319-70942-0_25

Chakrabarti, B. K., Chakraborti, A., & Chatterjee, A. (2006). Econophysics and Sociophysics: Trends and Perspectives. https://doi.org/ https://doi.org/10.1002/9783527610006

Cobb, C. W., & Douglas, P. H. (1928). A theory of Production. The American Economic Review, 18(1), 139-165. https://www.jstor.org/stable/1811556?seq=1

Fisher, F. M., & Monz, J. (1992). Aggregation: Aggregate Production Functions and Related Topics (Vol. 1). The MIT Press.

Gallegati, M. (2016). Beyond Econophysics (Not to mention Mainstream Economics). The European Physical Journal Special Topics, 225(17), 3179-3185. https://link.springer.com/article/10.1140/epjst/e2016-60105-6

Georgescu-Roegen, N. (1986). The Entropy Law and the Economic Process in Retrospect. Eastern Economic Journal, 12(1), 3-25. https://www.jstor.org/stable/40357380

Howitt, R. E., & Msangi, S. (2014). Entropy Estimation of Disaggregate Production Functions: An Application to Northern Mexico. Entropy, 16(3), 1349-1364. https://doi.org/10.3390/e16031349

Jakimowicz, A. (2020). The Role of Entropy in the Development of Economics. Entropy, 22(4), 452. https://doi.org/10.3390/e22040452

Jehle, G. A. & Reny, P.J. (2001). Advanced Microeconomic Theory. Pearson Education India.

Koengkan, M., Fuinhas, J. A., Kazemzadeh, E., Osmani, F., Alavijeh, N. K., Auza, A., & Teixeira, M. (2022). Measuring the Economic Efficiency Performance in Latin American and Caribbean Countries: An Empirical Evidence from Stochastic Production Frontier and Data Envelopment Analysis. International Economics, 169, 43-54. https://doi.org/10.1016/j.inteco.2021.11.004

Konings, J., & Vanormelingen, S. (2015). The Impact of Training on Productivity and Wages: Firm-level Evidence. Review of Economics and Statistics, 97(2), 485-497. https://doi.org/10.1162/REST_a_00460

Labini, P. S. (1995). Why the Interpretation of the Cobb-Douglas Production Function Must Be Radically Changed. Structural Change and Economic Dynamics, 6(4), 485-504. https://doi.org/10.1016/0954-349X(95)00025-I

Lim, A. E., & Shanthikumar, J. G. (2007). Relative Entropy, Exponential Utility, and Robust Dynamic Pricing. Operations Research, 55(2), 198-214. https://doi.org/10.1287/opre.1070.0385

McCombie, J. S. (1998). ‘Are There Laws of Production’: An Assessment of the Early Criticisms of the. Review of Political Economy, 10(2), 141-173. https://doi.org/10.1080/09538259800000023

Mimkes, J. (2006). A Thermodynamic Formulation of Economics. In B. K. Chakrabarti, A. Chakraborti & A. Chatterjee (Eds.), Econophysics and Sociophysics: Trends and Perspectives (pp. 1-33). Wiley-VCH. https://doi.org/ 10.1002/9783527610006

Mimkes, J. (2010). Putty and Clay-Calculus and Neoclassical Theory. Dynamics of Socio-Economic Systems, 2(1), 1-8. https://www.researchgate.net/profile/Juergen-Mimkes/publication/266867949_Putty_and_Clay_-Calculus_and_Neoclassical_Theory/links/545e9f480cf295b561602fbc/Putty-and-Clay-Calculus-and-Neoclassical-Theory.pdf

Mimkes, J. (2019). Introduction to Econophysics: Look Back into the Future-Tomorrow's Science by the Data of Yesterday. International Journal of Productivity Management and Assessment Technologies (IJPMAT), 7(1), 1-27. https://doi.org/10.4018/IJPMAT.2019010101

Miyagi, T. (1994). The Entropy Production Function and Its Application to the Multi-Commodity and Multi-Sector Model. The Annals of Regional Science, 28, 345-367. https://doi.org/10.1007/BF01581965

Pedrini, G., & Cappiello, G. (2022). The Impact of Training on Labour Productivity in the European Utilities Sector: An Empirical Analysis. Utilities Policy, 74, 101317. https://doi.org/10.1016/j.jup.2021.101317

Perakis, G., & Roels, G. (2008). Regret in the Newsvendor Model with Partial Information. Operations Research, 56(1), 188-203. https://doi.org/10.1287/opre.1070.0486

Pereira, E. J. D. A. L., da Silva, M. F., & Pereira, H. D. B. (2017). Econophysics: Past and Present. Physica A: Statistical Mechanics and its Applications, 473, 251-261. https://doi.org/10.1016/j.physa.2017.01.007

Pindyck, R. S., & Rubinfeld, D. L. (2017). Microeconomics. Pearson Education.

Redondo, J. F. B. (2011). La función de producción Cobb–Douglas y la economía española. Revista de Economía Crítica, (12), 9-38. https://doi.org/10.33890/innova.v3.n4.2018.495

Richmond, P., Mimkes, J., & Hutzler, S. (2013). Econophysics and Physical Economics. Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199674701.001.0001

Solow, R. (1957). Technical Change and the Aggregate Production Function. Review of Economics and Statistics, 39(3), 312–20. https://doi.org/10.2307/1926047

Stanley, H. E., Afanasyev, V., Amaral, L. A. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Leschhorn, H., Maass, P., Mantegna, R. N., Peng, C. K., Prince, P. A., Salinger, M. A., Stanley, M., H., R., & Viswanathan, G. M. (1996). Anomalous Fluctuations in the Dynamics of Complex Systems: From DNA and Physiology to Econophysics. Physica A: Statistical Mechanics and its Applications, 224(1-2), 302-321. https://doi.org/10.1016/0378-4371(95)00409-2

Sulvina, S., Abidin, Z., & Supono, S. (2020). Production Analysis of Green Mussel (Perna viridis) in Lampung Province. e-Jurnal Rekayasa dan Teknologi Budidaya Perairan, 8(2), 975-983. https://doi.org/10.23960/jrtbp.v8i2.p975-984

Tsigaris, P., & Wood, J. (2016). A Simple Climate-Solow Model for Introducing the Economics of Climate Change to Undergraduate Students. International Review of Economics Education, 23, 65-81. https://doi.org/10.1016/j.iree.2016.06.002

Varian, H. R. (2014). Intermediate Microeconomics with Calculus: A Modern Approach. WW Norton & company.

Wassihun, A. N., Koye, T. D., & Koye, A. D. (2019). Analysis of Technical Efficiency of Potato (Solanum tuberosum L.) Production in Chilga District, Amhara National Regional State, Ethiopia. Journal of Economic Structures, 8(1), 1-18. https://doi.org/10.1186/s40008-019-0150-6

Wouterse, F., & Badiane, O. (2019). The role of health, experience, and educational attainment in agricultural production: Evidence from smallholders in Burkina Faso. Agricultural Economics, 50(4), 421-434. https://doi.org/10.1111/agec.12500

Téléchargements

Publié-e

2025-05-09

Comment citer

Betancur, I. C., Arango-Sánchez, E., Bedoya-Calle, Álvaro H., Caro- Lopera, F. J., & Velásquez Sierra, Éver A. (2025). Calcul de la fonction de production à l’aide de l’entropie : un modèle issu de l’éconophysique. Lecturas De Economía, (103), 77–106. https://doi.org/10.17533/udea.le.n103a356738

Numéro

Rubrique

Article