Tolerance to heavy metals of native strains isolated from mining waste of the Hualilán mine, Argentina
DOI:
https://doi.org/10.17533/udea.rcm.n18a02Keywords:
filamentous fungi, native strains, leaching piles, heavy metalsAbstract
Heavy-metal contamination is one of the most serious and complex environmental problems to be dealt with nowadays. Leaching piles from the mining industry are characterized by a high content of dissolved metals. In addition, they are considered to be a suitable habitat for the development of resistant microorganisms. Among such microorganisms are those native ones that are physiologically adapted to tolerate high concentrations of heavy metals and thus, are considered to be candidates for bioremediation processes. Taking this into consideration, the aim of this study was to isolate and select filamentous fungal strains with the potential to remove heavy metals. Samples of leaching piles were drawn from Hualilan Mine in the province of San Juan (Argentina). Isolation of filamentous fungi was carried out in a Sabouraud-glucose-agar medium with antibiotics, the fungi being identified by using molecular biology techniques (amplification and sequencing of the fragment ADNr 18S y 26S, ITS1, ADNr 5.8S e ITS2). Tolerance to Cu (II) y Pb (II) was studied in plates with PDA medium with concentrations between 25 and 800 ppm of each metal. Incubation conditions were at 28° C during a period of total development of the fungi and compared with a control plate (without metal) by measuring growth diameters. A statistical analysis was carried out through variance analysis and Duncan means comparison test, with the ANOVA multifactor statistical software under a completely randomized experimental design with 2x6x1 factorial arrangement, a Petri dish as an experimental unit, and three repetitions. As a result, three strains were isolated, namely, Penicillium simplicissimum, Fusarium sp and Penicillium funiculosum. The fungi identified show tolerances to different concentrations of metal solutions, the most tolerant strain being Penicillium simplicissimum.
Downloads
References
Chen, C. and Wang, J. Biosorbents for heavy metals removal and their future. Biothecnology Advances 27 (2): 195-226 (2009).
Cassidy, J. and Shields, T. Emerging Federal Law of Mine Waste, Judicial and Legislative Developments. En: Maryt L. Fredrickson, editors. Wyoming Law Review, USA (1991)
West, C. and Mines, L. Stormwater, Pollution and You, Mineral Policy Center, USA. Amann R, Ludwing W, Schleifer K. Phylogenetic 3.Identification and In situ Detection of Individual Mirobial Cells without Cultivation.Microb 59, 143-69 (1995). AEL e.V., Effizienter Stromeinsatz, available online at: http://www.ael-online.de/inhalt/fachinfo/download/tipps.
Malik, A. Metal bioremediation throught growing cells. Environment Internaytional 30, 261-278 (2004). DIN 18910, Wärmeschutz geschlossener Ställe, Deutsches Institut für Normung e.V., 2004.
Iskandar, N. Zainudin, N. and Tang, S. Tolerance and biosorption of cooper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Science 23, 824-830 (2011).
Muñoz, A. Ruiz, E. Abriouel, H. Gálvez, A. Ezzouhri, L. Lairini, L. and Espínola, K. Heavy metal tolerance of microorganisms isolated from wastewaters. Identification and evaluation of its potential for biosorption. Chem. Eng. J. Elsevier 210, 325-332 (2012). H.J. Kruczek, H. Kämper, G. Scheibe, B. Feller, N. Lohmann, W. Büscher, G. Schmitt-Pauksztat, T. Schneiderand S. Schierhold, Planungsdaten, KTBL-Schrift 445(2005) 19-52.
Chayabatra, Ch. and Ju, Lu. Degradation of n- hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Applied and. Environmental. Microbiology 66(2): 493–498 (2010). A. Fübbecker, Stromeinsparung, LWK Niedersachsen, available online.
Niu, H. Volesky, B. Wang, J. and Xu, X. Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol. Bioeng 42, 785–787 (1993).
Nazareth, S. and Marbaniang, T. Effect of heavy metals on cultural and morphological growth characteristics of halotolerant Penicillium morphotypes. J. Basic Microb 48, 363–369 (2008).
Atlas, R. Burlage, R. Geesey, G. Stahl, D. and Sayler, G. Technique in Microbial Ecology. Oxford University Press 45, 239-242 (1998).
Bruns, T. Lee, S. Taylor, J. and White, T. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages: 315-322. En: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York, Academic Press, USA (1990).
Fang, G. Grumet, R. and Hammar, S. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13, 52–55 (1992).
Samson, R. Houbraken, J. and Yilmaz, N. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology 70(1), 159-183 (2011).
J.I. Pitt, “Penicillium viridicatum, Penicillium verrucossum and the production of ochratoxin A”,Appl. Environ., vol. 53, no.2, pp. 266-269, 1987.
J. I. Pitt, A. D.Hocking,Fungi and Food Spoilage, 2nd edition”, London, Blackie Academic and Professional, 1997.
P.Fernández, M.Cabral, O.Delgado, J.Fariña, L.Figueroa, “Textile dye polluted waters as an unusual source for selecting chromate-reducing yeasts through Cr(VI)-enriched microcosms”.Int.Biodeterior.Biodegradation, vol. 79, pp. 28-35, 2013.
J. Cárdenas, M.Moctezuma, I. Acosta, “Aislamiento de hongos resistentes a metales pesados a partir de agua de diferentes ríos de la Husteca Potosina”,Revista Académicade investigación, vol. 26, pp. 45-50, 2010.
B.Volesky, “Biosorption process simulation tools”, Hydrometallurgy, vol 71, no. 1-2, pp. 179-190, 2003.
J.Castellón, J. Marrugo, I.Urango,“Remoción de plomo, cadmio y mercurio en un efluente minero por medio de biomasa de hongos Penicillium sp”, In:II Seminario de Ciencias Ambientales Sue-Caribe & VII. Seminario Internacional de Gestión Ambiental,Montería,2014.
R. Holanda, S.Hedrich, I.Nancucheo, G Oliveira, B.Grail,D. B. Johnson“Isolation and characterization of mineral-oxidising “Acidibacillus” spp. From mine sites and geothermal environments in different global locations”,Res.Microbiol, vol. 167,no. 7, pp. 613-623, september 2016.
A.J. Muñoz, F.Espínola, E.Ruiz, “Removal of Pb(II) in a packed-bed column by a Klebsiella sp. 3S1 biofilm”,J Ind Eng Chem, vol. 40, pp. 118–127,august 2016.
W.-B.Lu, J.-J. Shi, C.-H. Wang, J.-S. Chang, “Biosortion of lead, copper and cadmiun by an indigenous isolate Enterobacter sp possessing hight heavy-metal resistance”. J.Hazard.Mater., vol. 134,no.1-3,pp. 80-86, june 2006.
P. Anand, J.Isar, S.Saran, R. K. Saxena, “Bioaccumulation of copper by Trichoderma viride”,Bioresour. Technol,vol. 97,no 8,pp. 1018-1025, may 2006.
P.Suárez, R.Reyes, “La incorporación de metales pesados en las bacterias y su importancia para el ambiente”,Interciencia, vol. 27,no. 4,pp. 160-164, 2002.
G.M. Gadd, “Biosorption: critical review of scientific racionale, envioronmenatl importance and significamce for pollution treatment”,J. Chem. Technol. Biotechnol, vol. 84, pp. 13-28, 2009.
M. Merroum, M.Nedelkova, J.Ojeda, T.Reitz, M.Fernandez, J.Arias, M. Romero-Gonzalez, S.Selenska Pobell, “Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by pozentiometric titration, TEM and X-ray absorption spectroscopic analyses”. J. Hazard.Mater., vol. 197, pp. 1-10, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Colombiana de Materiales
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.