Synthesis and characterization of type b carbonate hydroxyapatite powders with different carbonate contents

Authors

  • María Isabel Ochoa Gómez University of Antioquia
  • María Esperanza López Gómez University of Oviedo
  • Hamilton Copete López University of Antioquia

DOI:

https://doi.org/10.17533/udea.rcm.n17a03

Keywords:

hydroxyapatite, carbonata type B, wet precipitation, reverse method

Abstract

Hydroxyapatite (HA) is a material widely used in biological applications, although its application is often limited due to its stability in physiological environments. That is why it arises as an alternative, the Carbonate Hydroxyapatite type B (CHA), which has greater similarity to biological bone due to the presence of carbonate ion in its structure. In order to obtain it, different synthesis methods have been used, however, the complexity and low reproducibility of many of them has made it an increasingly researched topic. In this work it is shown the synthesis and characterization of HA and CHA type B by the inverse type wet precipitation method, with 3 different carbonate contents, denoted as C2, C3 and C4 with carbon/phosphorus relations (C/P) of 0.25, 0.375 and 0.5 respectively, being C4 the CHA with higher carbonate content. The synthesized powders were characterized by X-ray diffraction (XRD), X-ray fluorescence (WD-XRF), combustion of carbon by Leco analyzer, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM).
|Abstract
= 750 veces | PDF (ESPAÑOL (ESPAÑA))
= 1376 veces|

Downloads

Download data is not yet available.

Author Biographies

María Isabel Ochoa Gómez, University of Antioquia

Materials Engineer.

María Esperanza López Gómez, University of Oviedo

Ph.D. in Materials Science and Technology.

Hamilton Copete López, University of Antioquia

M.Sc., Materials Engineer.

References

Rodríguez Escobar, W., Bejarano Barrera, H., & Villazón Amarís, H. (1999). Importancia estratégica de los nuevos materiales en el desarrollo sostenible y como alternativa de competitividad.Ciencia E Ingeniería Neogranadina,8, 33-42. https://doi.org/10.18359/rcin.1408.

Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review.Bioactive Materials, 2(4), 224-247. https://doi.org/10.1016/j.bioactmat.2017.05.007

Roy, M., Bandyopadhyay, A., & Bose, S. (2017). Ceramics in Bone Grafts and Coated Implants. In Materials and Devices for Bone Disorders. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802792-9.00006-9.

Legeros, Racquel Zapanta, & Legeros, J. P. (2008). Hydroxyapatite. Bioceramics and Their Clinical Applications, 367–394. https://doi.org/10.1533/9781845694227.2.367

Botero, Y. (2016). Hidroxiapatita carbonatada, una opción como biomaterial para implantes: una revisión del estado del arte. Revista Colombiana de Materiales, No. 8, pp. 79-97.

Londoño López, M., Echevarría, A., & De La Calle, F. (2006). Características cristaloquímicas de la hidroxiapatita sintética tratada a diferentes temperaturas. Revista EIA, 5, 109–118.

Landi, E., Celotti, G., Logroscino, G., & Tampieri, A. (2003). Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 23(15), 2931–2937. https://doi.org/10.1016/S0955-2219(03)00304-2.

Lafon J-P (2004). Synthese, stabilite thermique et frittage d’hydroxyapatites carbonatees. Universite de Limoges.

(Kamitakahara et al., 2015)Kamitakahara, M., Nagamori, T., Yokoi, T., & Ioku, K. (2015). Carbonate-containing hydroxyapatite synthesized by the hydrothermal treatment of different calcium carbonates in a phosphate-containing solution. Journal of Asian Ceramic Societies, 3(3), 287–291. https://doi.org/10.1016/j.jascer.2015.05.002.

Vignoles M.Contribution à l'etude des apatites carbonatées de type B.Institut National Polytechnique de Toulouse, 1984.

Legeros, R. Z., Legeros, J. P., & Trautz, O. R. (n.d.). Effect of carbonate on the crystallinity. 57–66.

Frank-Kamenetskaya, O. V. (2008). Structure, Chemistry and Synthesis of Carbonate Apatites —The Main Components of Dental and Bone Tissues. Minerals as Advanced Materials I, 241–252. https://doi.org/10.1007/978-3-540-77123-4_30.

Vignoles, M., Bonel, G., & Bacquet, G. (1982). Etude physico-chimique des apatites carbonatees phospho-calciques semblables a la francolite. Bulletin de Mineralogie, 105(3), 307–311. https://doi.org/10.3406/bulmi.1982.7621.

Safarzadeh, M., Ramesh, S., Tan, C. Y., Chandran, H., Ching, Y. C., Noor, A. F. M., Krishnasamy, S., & Teng, W. D. (2020). Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 59(2), 73–80. https://doi.org/10.1016/j.bsecv.2019.08.001.

Kee, C. C., Ismail, H., & Mohd Noor, A. F. (2013). Effect of synthesis technique and carbonate content on the crystallinity and morphology of carbonated hydroxyapatite. Journal of Materials Science and Technology,29(8), 761–764.

https://doi.org/10.1016/j.jmst.2013.05.016.

Ferguson J, Diefenbeck M, McNally M (2017). Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections. J Bone Jt Infect.Available from: http://www.jbji.net/v02p0038.htm

Fernández, M. M. (2010). Materiales compuestos nanoestructurados biocompatibles con matriz de hidroxiapatito. Psicothema, 11(003), 679–689.

Venkateswarlu, K., Sandhyarani, M., Nellaippan, T. A., & Rameshbabu, N. (2014). Estimation of Crystallite Size, Lattice Strain and Dislocation Density of Nanocrystalline Carbonate Substituted Hydroxyapatite by X-ray Peak Variance Analysis. Procedia Materials Science, 5, 212–221. https://doi.org/10.1016/j.mspro.2014.07.260

Xue, C., Chen, Y., Huang, Y., & Zhu, P. (2015). Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods. Nanoscale Research Letters, 10(1), 1–6. https://doi.org/10.1186/s11671-015-1018-9A

Published

2021-09-15

How to Cite

Ochoa Gómez, M. I., López Gómez, M. E., & Copete López, H. (2021). Synthesis and characterization of type b carbonate hydroxyapatite powders with different carbonate contents. Revista Colombiana De Materiales, (17), 11. https://doi.org/10.17533/udea.rcm.n17a03

Issue

Section

Artículos

Most read articles by the same author(s)