Effect of environmental and nutritional management during the transport of O. niloticus fry: Welfare indicators and productive performance

Authors

DOI:

https://doi.org/10.17533/udea.rccp.e360786

Keywords:

animal welfare, functional additives, nutritional management, quercetin, transport stress, vitamin C

Abstract

Background. The transport of juvenile tilapia (Oreochromis niloticus) is a critical phase in aquaculture production, where environmental and nutritional management may significantly influence animal welfare and productive performance. Objectives. This study aimed to evaluate the combined effect of water-to-oxygen ratios in transport bags and the type of diet provided before and after handling on welfare indicators and growth parameters of tilapia fry. Methods. A two experiment (3 × 2 factorial) were conducted, testing three oxygen supplementation levels (10, 15, and 20 L) in transport bags (equivalent to water-to-oxygen ratios of 1:1, 1:1.5, and 1:2), two diets (control and functional) before transport, and two diets (control and functional) after transport. Blood samples were collected at 0, 4, and 28 hours post-transport to evaluate glucose, lactate, and hematocrit as welfare indicators, while final weight, specific growth rate, and feed efficiency were measured after a 28-day period. Results. The 1:2 water-to-oxygen ratio was the most effective, maintaining dissolved oxygen above 3 mg L⁻¹ and promoting superior productive performance. All fish exhibited physiological stress responses after 4 hours of transport, as reflected by elevated glucose, lactate, and hematocrit values. However, partial recovery was observed after 28 hours, especially in fish previously fed the functional diet, which showed lower increases in hematological parameters. The best productive performance was recorded in fish feed a functional diet prior to transport and a control diet afterward, suggesting a beneficial pre-conditioning effect of the functional additives, coupled with an improved post-transport protein supply. Conclusions. An integrated management strategy that includes adequate oxygen supplementation (1:2 water-to-oxygen ratio) and the strategic use of functional additives before transport followed by a balanced control diet afterward, enhances both welfare and growth outcomes in tilapia fry. These findings provide valuable insights for optimizing handling practices and supporting sustainable and efficient aquaculture systems.

|Abstract
= 34 veces | PDF
= 16 veces|

Downloads

Download data is not yet available.

Author Biographies

Jonathan Bermúdez-Lara, Universidad de Guanajuato

Universidad de Guanajuato, Maestría en Biociencias, Guanajuato, México

Cristina Pascual-Jiménez, Universidad Nacional Autónoma de México

Universidad Nacional Autónoma de México, Unidad Multidisciplinaria de Docencia e Investigación, Yucatán, México

Carlos Álvarez-González, Universidad Juárez Autónoma de Tabasco

Universidad Juárez Autónoma de Tabasco, Laboratorio de Fisiología en Recursos Acuáticos, Tabasco, México

Pedro J. Albertos-Alpuche, Universidad de Guanajuato

Universidad de Guanajuato, Departamento de Veterinaria y Zootecnia, Guanajuato, México

Rosario Martínez-Yáñez, Universidad de Guanajuato

Universidad de Guanajuato, Maestría en Biociencias, Guanajuato, México

References

Abdel-Tawwab M, Monier MN, Hoseinifar SH, Faggio C. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiol Biochem. 2019;45(3):997–1013. https://doi.org/10.1007/s10695-019-00614-9

Aboagye DL, Allen PJ. Effects of acute and chronic hypoxia on acid-base regulation, hematology, ion, and osmoregulation of juvenile American paddlefish. J Comp Physiol B. 2018;188:77–88. https://doi.org/10.1007/s00360-017-1104-7

Adah DA, Adah AS, Nwonuma CO, Olaosebikan B, Oyekunle T. Ameliorative effects of ascorbic acid on hematological and water quality parameters following a 100 km transportation of adult Clarias gariepinus. Media Kedokteran Hewan. 2023;34(1):13–26. https://doi.org/10.20473/mkh.v34i1.2023.13-26

Alemayehu T, Geremew A, Getahun A. The role of functional feed additives in Tilapia nutrition. Fish Aquac J. 2018;9(2):1–6. https://doi.org/10.4172/2150-3508.1000249

Alsagheer H, Abd El Aziz Ahmed Abd El Galil M, Abd Allah Mousa M, El-Sayed Asman A. Nile tilapia (Oreochromis niloticus) response and salt mitigation effect post 5 hours transportation stress. International J Compr Vet Res. 2024;2(1):45–54. https://doi.org/10.21608/ijcvr.2024.354010

Armobin K, Ahmadifar E, Adineh H, Samani MN, Kalhor N, Yilmaz S, Hoseinifar S, Doan H. Quercetin application for common carp (Cyprinus carpio): I. Effects on growth performance, humoral immunity, antioxidant status, immune-related genes, and resistance against heat stress. Aquac Nutr. 2023;1168262:1–10. https://doi.org/10.1155/2023/1168262

Barbosa LG, Moraes G, Inoue LAKA. Respostas metabólicas do matrinxã submetido a banhos anestésicos de eugenol. Acta Sci Biol Sci. 2007;29(3):255–260. https://www.redalyc.org/pdf/1871/187115762003.pdf

Beecham R, Small B, Minchew C. Using Portable Lactate and Glucose Meters for Catfish Research: Acceptable Alternatives to Established Laboratory Methods?. N Am J Aquac. 2006;68(4):291–295. https://doi.org/10.1577/A05-074.1

Berschick P, Bridges CR, Grieshaber MK. The influence of hyperoxia, hypoxia and temperature on the respiratory physiology of the intertidal rockpool fish Gobius cobitis pallas. J Exp Biol. 1987;130(1):368–387. https://doi.org/10.1242/jeb.130.1.368

Cai C, Ye YT, Chen L, Qin J, Wang YL. Oxygen consumption and ammonia excretion of black carp (Mylopharyngodon piceus Richardson) and allogynogenetic crucian carp (Carassius auratus gibelio ♀ × Cyprinus carpio ♂) fed different carbohydrate diets. Fish Physiol Biochem. 2010;36(4):1191–1198. https://doi.org/10.1007/s10695-010-9398-3

Colt J, Kroeger E. Impact of aeration and alkalinity on the water quality and product quality of transported tilapia—A simulation study. Aquac Eng. 2013;55:46–58. https://doi.org/10.1016/j.aquaeng.2013.03.002

Dagne A, Degefu F, Lakew A. Comparative growth performance of mono-sex and mixed-sex Nile tilapia (Oreochromis niloticus) in pond culture system at Sebeta, Ethiopia. Int J Aquacult. 2013;3(7):30–34. https://aquapublisher.com/index.php/ija/article/html/695/policy

Dancey CP, Reidy J. Statistics without maths for psychology. 7th ed. Harlow: Pearson Education; 2017. https://textbookfull.com/product/statistics-without-maths-for-psychology-7th-edition-christine-dancey/

Doane DP, Seward LE. Measuring skewness: A forgotten statistic?. Journal of Statistics Education. 2011;19(2):1-18. https://doi.org/10.1080/10691898.2011.11889611

Dong XY, Qin JG, Zhang XM. Fish adaptation to oxygen variations in aquaculture from hypoxia to hyperoxia. J Fish Aquac. 2011;2(2):23–28. https://researchnow.flinders.edu.au/en/publications/fish-adaptation-to-oxygen-variations-in-aquaculture-from-hypoxia-

El-Sayed AFM. Tilapia Culture. Wallingford: CABI Publishing; 2006. https://doi.org/10.1079/9780851990149.0000

FAO. El estado mundial de la pesca y la acuicultura 2024. La transformación azul en acción. Roma, Italia: FAO; 2024. 278 p. https://doi.org/10.4060/cd0683es

Ferreira JM, Félix L, Jorge S, Monteiro SM, Olsson IAS, Valentim AM. Anesthesia overdose versus rapid cooling for euthanasia of adult zebrafish. Zebrafish. 2022;19(4):148–159. https://doi.org/10.1089/zeb.2022.0001

Field A. Discovering statistics using IBM SPSS statistics. 4th ed. Sage Publications; 2013. https://uk.sagepub.com/en-gb/eur/node/4556/print

Fulton TW. The rate of growth of fishes. 22nd Annual Report of the Fishery Board of Scotland. 1904;3:141–241.

García E, Martínez J, Pérez L. Diseño de Experimentos: aplicaciones en Ingeniería. México: Limusa; 2000.

Goes E, Lara J, Gasparino E, Goes M, Zuanazzi J, Lopera-Barrero N. Effects of transportation stress on quality and sensory profiles of Nile tilapia fillets. Sci Agric. 2018;75(4):321–328.

http://dx.doi.org/10.1590/1678-992X-2016-0387

Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electronica. 2001;4(1):1–9. https://palaeo-electronica.org/2001_1/past/past.pdf

Hepher, B. Nutrition of pond fishes. Cambridge University Press; 1988. https://doi.org/10.1017/CBO9780511735455

Hermes-Lima M, Zenteno-Savin T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol. 2002;133(4):537–556. https://doi.org/10.1016/S1532-0456(02)00080-7

Isiordia-Pérez E, Isiordia-Cortez A, Cuevas-Rodríguez BL, Ruiz-Velazco-Arce JM, Bautista-Covarrubias JC. Crecimiento y sobrevivencia de la tilapia Oreochromis niloticus cultivada en jaulas flotantes rectangulares. Acta Pesquera. 2021;7(13):62-68. https://revistas.cimateuan.education/openjs/index.php/aprevista/article/view/41

Jiang D, Wu Y, Huang D, Ren X, Wang Y. Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella. Fish Physiol Biochem. 2017;43:1433–1442. https://doi.org/10.1007/s10695-017-0383-y

Kumar G, Engle CR. Technological advances that led to growth of shrimp, salmon, and tilapia farming. Rev Fish Sci Aquac. 2016;24(2):136–152. https://doi.org/10.1080/23308249.2015.1112357

Martínez-Yáñez R, Mora-Medina P, Albertos – Alpuche, P. EPI-DOM approach for comprehensive assessment of integral animal welfare. Front Anim Sci. 2025;6:1495149. https://doi.org/10.3389/fanim.2025.1495149

McArley T, Morgenroth D, Zena L, Ekström A, Sandblom E. Experimental hyperoxia (O2 supersaturation) reveals a gill diffusion limitation of maximum aerobic performance in fish. Biol Lett. 2022;18(11):20220401. https://doi.org/10.1098/rsbl.2022.0401

McArley TJ, Sandblom E, Herbert NA. Fish and hyperoxia—From cardiorespiratory and biochemical adjustments to aquaculture and ecophysiology implications. Fish Fish. 2020;2022(2):324-355. https://doi.org/10.1111/faf.12522

McClerking C. Lactate. In: Casler KS, Gawlik K, editors. Laboratory Screening and Diagnostic Evaluation. New York: Springer Publishing Company; 2022. p. 472–475. http://dx.doi.org/10.1891/9780826188434

McDonald G, Milligan L. Ionic, osmotic and acid-base regulation in stress. In: Iwama GK, Pickering AD, Sumpter JP, Schreck C, editors. Fish stress and health in aquaculture. Cambridge: Cambridge University Press; 1997. p. 119–144. https://www.cambridge.org/bt/universitypress/subjects/life-sciences/zoology/fish-stress-and-health-aquaculture

Millot S, Bégout ML, Ruyet P, Breuil G, Di-Poï C, Fievet J, Pineau M, Roué M, Sévére A. Feed demand behavior in sea bass juveniles: Effects on individual specific growth rate variation and health (inter-individual and inter-group variation). Aquaculture. 2008;274(1):87–95. https://doi.org/10.1016/j.aquaculture.2007.11.004

Navarro R, de França R, Paludo G, Bizarro Y, Da Silva R, Navarro F. Resposta fisiológica de tilápia do Nilo (Oreochromis niloticus), sobre diferentes anestésicos em situação de transporte. Acta Scientiarum Technology. 2016;38(3):301–306. https://www.redalyc.org/pdf/3032/303246074006.pdf

Odhiambo E, Ang’ienda P, Okoth P, Onyango D. Stocking density induced stress on plasma cortisol and whole blood glucose concentration in Nile Tilapia fish (Oreochromis niloticus) of Lake Victoria, Kenya. Int J Zool. 2020;2020(1):1–8. https://doi.org/10.1155/2020/9395268

Padmavathy P, Ramanathan N. Quantitative changes of glycogen and lactate in muscle, blood and liver tissues of Oreochromis mossambicus under hypoxia and recovery. Tamilnadu Journal of Veterinary and Animal Sciences. 2010;6(2):54–59. https://www.cabidigitallibrary.org/doi/full/10.5555/20103202335

Peng S, Shi Z, Fei Y, Quanxin G, Sun P, Jiangang W. Effect of high-dose vitamin C supplementation on growth, tissue ascorbic acid concentrations and physiological response to transportation stress in juvenile silver pomfret, Pampus argenteus. J Appl Ichthyol. 2013;29:1337–1341. https://doi.org/10.1111/jai.12250

Pérez M, Sáenz M, Martínez E. Crecimiento de las tilapias Oreochromis niloticus en cultivo monosexual y ambos sexos, en sistemas de producción semi-intensivos. Revista Científica de la UNAN-León. 2015;6(1):72–79. https://core.ac.uk/download/pdf/228743264.pdf

Ricker, WE. Growth Rates and Models. In: Hoar WS, Randal DJ, Brett JR. Editors. Fish Physiology Vol. VIII. Bioenergetics and Growth. Academic Press; 1979. p. 677-743. https://doi.org/10.1016/S1546-5098(08)60034-5

Salazar D, Del Castillo J. Análisis Estadístico de Datos: Fundamentos y Aplicaciones. Bogotá: Ecoe Ediciones; 2018.

Schreck CB, Tort L. The concept of stress in fish. In: Schreck CB, Tort L, Farrell AP, Brauner CJ, editors. Fish Physiology. Vol 35: Biology of Stress in Fish. Academic Press; 2016. p. 1–34. https://doi.org/10.1016/B978-0-12-802728-8.00001-1

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Buenas prácticas para el cultivo de tilapia en México. México: SAGARPA; 2016. https://www.gob.mx/cms/uploads/attachment/file/131987/Buenas_Practicas_para_el_Cultivo_de_la_Tilapia.pdf

Somerville C, Cohen M, Pantanella A, Stankus A, Lovatelli A. Small scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper 589. Rome: FAO; 2014. 263 pp. https://openknowledge.fao.org/server/api/core/bitstreams/2ca21047-390f-42cd-bd1d-0c2ebc9c1df2/content

Sun S, Hu C, Qiao F, Chen L, Zhang M, Du Z. High dissolved oxygen exacerbates ammonia toxicity with sex-dependent manner in zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2023;266:109549. https://doi.org/10.1016/j.cbpc.2023.109549

Tao L. Effects of different dissolved oxygen concentration on metabolic level of juvenile rainbow trout (Oncorhynchus mykiss) in the recirculating systems. Journal of Shanghai Fisheries University. 2007;16(5):437-442. https://api.semanticscholar.org/CorpusID:101945608

Underwood AJ. Experiments in ecology: Their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press; 1997. https://doi.org/10.1017/CBO9780511806407

Valdez-Prudencio KM, Arceo-Díaz S, Bricio-Barrios JA, Bricio-Barrios EE. Mathematical model and experimental validation for the prediction of dissolved oxygen saturation in aquaculture ponds. Journal of Physics: Conference Series. 2021;2153:012017. https://doi.org/10.1088/1742-6596/2153/1/012017

Lushchak VI, Bagnyukova TV. Effects of different environmental oxygen levels on free radical processes in fish. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology. 2006;144(3):283–289. https://doi.org/10.1016/j.cbpb.2006.02.014

Wang J, Zhang C, Zhang Z, Xie J, Yang L, Xing Y, Li Z. The effects of quercetin on immunity, antioxidant indices, and disease resistance in zebrafish (Danio rerio). Fish Physiol Biochem. 2020;46:759–770. https://doi.org/10.1007/s10695-019-00750-2

Wilson JM, Bunte RM, Carty AJ. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Assoc Lab Anim Sci. 2009;48(6):785–789. https://pubmed.ncbi.nlm.nih.gov/19930828/

Zahl IH, Kiessling A, Samuelsen OB, Hansen MK. Anaesthesia of Atlantic cod (Gadus morhua)—Effect of pre-anaesthetic sedation, and importance of body weight, temperature, and stress. Aquaculture. 2009;295(1–2):52–59. https://doi.org/10.1016/j.aquaculture.2009.06.019

Zar JH. Biostatistical analysis. 5th ed. Harlow, Essex: Pearson Education Limited; 2014. https://lib.zu.edu.pk/ebookdata/Biostatistics/Biostatistical%20Analysis-by%20Jerrold%20H%20Zar.pdf

Zhang W, Cao Z, Peng J, Chen B, Fu S. The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2010;157(3):212–219. https://doi.org/10.1016/j.cbpa.2010.06.184

Downloads

Published

2025-10-14

How to Cite

Bermúdez-Lara, J., Pascual-Jiménez, C., Álvarez-González, C., Albertos-Alpuche, P. J., & Martínez-Yáñez, R. (2025). Effect of environmental and nutritional management during the transport of O. niloticus fry: Welfare indicators and productive performance. Revista Colombiana De Ciencias Pecuarias. https://doi.org/10.17533/udea.rccp.e360786

Issue

Section

Accepted Manuscripts