Analysis, design and implementation of a deliberative agent to extract defining contexts in specialized texts
DOI:
https://doi.org/10.17533/udea.rib.5058Keywords:
Deliberative agent, defining contexts, specialized contexts, linguistic patterns, semiautomatic information extractionAbstract
This paper presents the results of the first stage comprised in the research project entitled: Multiagent System for Defining Contexts Extraction, based on ontologies for the Semantic Web. This article mainly aims at showing the analysis, design and implementation of a deliberative agent with a supervised learning mechanism, which permits the identification of defining contexts in specialized texts. The GAIA methodology has been selected to apply the agent in order to reach the stated goal. This methodology provides an increasing set of steps, based on agent- based systems as an organizational design process. The process of defining context extraction has been carried out by means of the GATE tool, which allows the detection of regular expressions in documents syntactically and semantically marked. The defining contexts are obtained in a semi-automatic way as a result of the interaction between the deliberative agent and the corpus selected. The semi-automatic extraction works by means of the design of the following interphases: basic application interphase, interacting with the JADE platform interphase, and agent communication interphase. After the design and the implementation of each of the inter phases mentioned above, it has been concluded that the research works dealing with the defining context extraction and linguistic patterns, do not provide the necessary information, from the syntactic and semantic aspect, to make the machine recognize the defining contexts and to develop a more refined search and retrieval, while using a minimum phase amount.
Downloads
References
WOOLDRIDGE et al. The GAIA methodology for agent-oriented analysisand design. Autonomous Agents and Multi-Agent Systems, 2000, vol. 3,no. 3, p. 285-312.
HUANG, Wei; EL-DARZI, E.; JIN, Li. Extending the GAIA Methodology forthe Design and Development of Agent-based Software Systems. En: ComputerSoftware and Applications Conference, 2007,vol. 2, no. 24-27, p. 159-168
RAJA, A.; LESSER, V. Meta-level reasoning in deliberative agents : intelligentagent technology. En: Proceedings. IEEE/WIC/ACM InternationalConference, Sep.-Dec. 2004.
IGLESIAS, C.A. Definición de una metodología para el desarrollo desistemas multiagentes, (Tesis Doctoral). Departamento de Ingeniería deSistemas Telemáticos de la Universidad Politécnica de Madrid, Madrid: 1998.
PA PA, Nyunt; NI LAR, Thein. Software agent oriented information integrationsystem in semantic web. En: Information and TelecommunicationTechnologies, 2005. APSITT 2005 Proceedings. 6th Asia-PacificSymposium. p. 226-271.
SHAFIG, M.O.; DING, Ying; FENSEL, D. Bridging multi agent systems andweb services: towards interoperability between software agents and semanticweb services. En: Enterprise Distributed Object Computing Conference.Oct. 2006, p. 85–96.
CHANGJIAN, Deng; YAO, Lan. Architecture of knowledge retrieval basedon multi-agent systems. En: Knowledge Acquisition and ModelingWorkshop International Symposium. 2008, no. 21-22, p.1083-1086.
SHAW, M.J.; HARROW, B.; HERMAN, S. Distributed artificial intelligencefor multi-agent problem solving and group learning. En: System Sciences,1991. Proceedings of the Twenty-Fourth Annual Hawaii InternationalConference. 1991, p.13- 26.
HUHNS, M. N. y SINGH, M. P. Distributed artificial intelligence forinformation systems, CKBS-94 Tutorial. UK: University of Keele, 1994.
MITKAS, P.A.; SYMEONIDIS, A.L.; ATHANASIADIS, I.N. A retrainingmethodology for enhancing agent intelligence. En: Integration of KnowledgeIntensive Multi-Agent Systems, International Conference, 2005. p. 422 –428.
SHOHAM, Y. Agent-oriented programming. Artificial Intelligence, 1993,vol. 60, no. 1, p. 51–92.
BATES et al. An architecture for action, emotion, and social behavior.Pittsburgh, PA : Carnegie-Mellon University, 1992. (Technical Report, Schoolof Computer Science ; CMU–CS–92–144).
BATES, J. The role of emotion in believable agents. En: Communications ofthe ACM, 1994, vol. 37, no.7, p. 122-125.
MAES, P. Agents that reduce work and information overload.Communications of the ACM, 1994, vol. 37, no. 7, p. 31–40.
ACAY, D.L.; TIDHAR, G.; SONENBERG, L. Extending agent capabilities :tools vs. agents; En: Web Intelligence and Intelligent Agent TechnologyInternational Conference, 9-12 2008. p. 259–265.
FIPA. Foundation for intelligent physical agents. [En línea]. Disponibleen: http://www.fipa.org. [Consulta: enero de 2009]
TECUCI, G. Building intelligent agents: an apprentice ship multistrategylearning theory, methodology, tool and case studies. Academic Press, 1998.
CHANGJIAN, Deng; YAO, Lan. Architecture of knowledge retrieval basedon multi-agent systems. En: Knowledge Acquisition and ModelingWorkshop International Symposium. 21-22 December 2008, p. 1083-1086.
GANDON, F.L. Combining reactive and deliberative agents for completeecosystems in infospheres. En: Intelligent Agent Technology, InternationalConference. 13-16 de octubre de 2003. p. 297 – 303.
CORCHADO, J. M. y MOLINA, J. M. Introducción a la teoría de agentesy sistemas multiagente. España: Edite Publicaciones Científicas, 2002.
RAO, et al. BDI agents from theory to practice. En: Proceedings of the firstInternational Conference on Multiagent Systems. 1995. San FranciscoUSA. p. 312-319.
ALARCÓN, R. y SIERRA, G. Reglas léxico-metalingüísticas para la extracciónautomática de contextos definitorios. En: Avances en la Ciencia de laComputación, VII Encuentro Nacional de Ciencias de la Computación.San Luís Potosí: MSCC, Hernández, A., Zechinelli, J.L. (eds). p. 242-247.
PEARSON, J. Terms in context. Amsterdam: John Benjamins PublishingCo. 1998.
MEYER, I. Extracting knowledge-rich contexts for terminography: aconceptual and methodological framework. En: BOURIGAULT, D., ChristianJacquemin and Marie-Claude L’Homme (eds.), Recent advances incomputational terminology, 2001, vol. 18, 380 pp. (p. 279–302).
KLAVANS, J.; MURESAN S. Evaluation of DEFINDER: a system to minedefinitions from consumer- oriented medical text. En: Proceedings of the 1stACM/IEEE-CS joint conference on Digital libraries. New York: ACMPress. 2000.
SAGGION, H. Identifying definitions in texts collections for question answering.En: International Conference of Language Resources and Evaluation,Proceedings. Sheffield: England University of Sheffield, Department ofComputer Science. 2004.
RODRÍGUEZ, C. Metalinguistic information extraction from specializedtexts to enrich computational lexicons. Barcelona: Universitat PompeuFabra. 2004.
MALAISÉ et al. Mining defining contexts to help structuring differentialontologies. Terminology, 2005, vol. 11, no. 1, p. 21-53.
MARSHMAN et al. French patterns for expressing concept relations.Terminology, 2002,vol.8, no. 2, p. 1–29.
CONDAMINES, A. Corpus analysis and conceptual relation patterns.Terminology, 2002, vol.1, p. 141-162.
ALARCÓN R. y SIERRA G. El rol de las predicaciones verbales en laextracción automática de conceptos. Estudios de Lingüística Aplicada, 2003,vol.38,p.129-144.
WOOLDRIDGE, M.J.; JENNINGS, N. R. Intelligent agents: theory andpractice. Knowledge Engineering Review, 1995. vol. 10, no. 2, pp. 115-152.
ZHANG Zhixiong et al. Hacia la construcción de un sistema de extracciónde información chino como soporte de innovación en los serviciosbibliotecarios. [En línea]. Disponible en: http://archive.ifla.org/IV/ifla72/papers/097-Zhixiong_Sa_Zhengxin_Ying_trans-es.pdf [Consulta: enero de2009]