Metabolitos secundarios en Trichoderma spp. y sus aplicaciones biotecnológicas agrícolas

Palabras clave: agrobiotecnología, biocontroladores, hongos antagonistas, micoparasitismo

Resumen

Trichoderma es un hongo con múltiples aplicaciones biotecnológicas agrícolas. La más importante es la capacidad de inhibir el crecimiento, la esporulación y la germinación de esporas de hongos patógenos. Una gran variedad de investigaciones se centra en estudiar el potencial biológico y la formulación a base de especies de Trichoderma con actividad inhibitoria sobre microorganismos, lo que genera que estas prácticas sean más eficaces en un amplio rango de condiciones ambientales, de especies de plagas y de sistemas de cultivos. La presente revisión ofrece una visión específica sobre los reportes de los metabolitos secundarios identificados en cepas del hongo de género Trichoderma con aplicación biotecnológica en la generación de productos agrícolas biocontroladores, con un enfoque prometedor para el descubrimiento de nuevos agentes de control basados en alternativas agroecológicas en el manejo integrado de hongos, bacterias, parásitos e insectos.

|Resumen
= 839 veces | PDF
= 514 veces| HTML
= 0 veces| HTML
= 61 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ana María Mesa-Vanegas, Universidad de Antioquia.
Grupo de investigación Agrobiotecnología, Universidad de Antioquia, Instituto de Biología, Medellín, Colombia.
Alexander Marín, Universidad de Antioquia.

Grupo de investigación BIOMA, Universidad de Antioquia, Instituto de Biología, Medellín, Colombia.

Jaime Calle-Osorno, Universidad de Antioquia.

Grupo de investigación BIOMA, Universidad de Antioquia, Instituto de Biología, Medellín, Colombia.

Citas

Abdul-Wahid OA, Elbanna SM. 2012. Evaluation of the insecticidal activity of Fusarium solani and Trichoderma harzianum against cockroaches Periplaneta americana. African Journal of Microbiology Research, 6(5): 1024-1032. DOI: 10.5897/AJMR11.1300

Andrade R, Ayer WA, Mebe PP. 1992. The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. Canadian Journal of Chemistry, 70(10): 2526-253. https://www.nrcresearchpress.com/doi/pdf/10.1139/v92-320

Adekambi S, Adegbola P, Arouna A. 2010. Farmers’ perception and agricultural technology adoption. The case of botanical extracts and biopesticides in vegetable production in Benin. Institut National des Recherches Agricoles du Bénin (INRAB), Porto-Novo, Bénin. DOI:10.22004/ag.econ.95917

Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong S-B, Seo H, Bae D-W, Bae I, Kim, J-J, Bae H. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92: 128-138. DOI: https://doi.org/10.1016/j.biocontrol.2015.10.005

Benítez T, Rincón AM, Limón MC, Codon AC. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4): 249-260. http://www.im.microbios.org/0704/0704249.pdf

Cantrell CL, Dayan FE, Duke SO. 2012. Natural products as sources for new pesticides. Journal of Natural Products, 75(6): 1231-1242. https://doi.org/10.1021/np300024u

Chen L, Wu GW, Liu D, Zhuang WY, Yin WB. 2018. Trichodermatides E and F from fungus Trichoderma applanatum. Journal of Asian Natural Products Research, 21(7): 659-665. https://doi.org/10.1080/10286020.2018.1465051

Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92(4): fiw036. DOI:10.1093/femsec/fiw036

Dal Bello GM, Mónaco CI, Cháves AR. 1997. Efecto de los metabolitos volátiles de Trichoderma hamatum sobre el crecimiento de hongos fitopatógenos procedentes del suelo. Revista Iberoamericana de Micología, 14: 131-134. http://www.reviberoammicol.com/1997-14/131134.pdf

Elfita E, Munawar M, Muharni M, Sudrajat MA. 2014. Identification of new lactone derivatives isolated from Trichoderma sp., an endophytic fungus of brotowali (Tinaspora crispa). Hayati Journal of Bioscience, 21(1): 15-20. DOI: https://doi.org/10.4308/hjb.21.1.15

Eziashi EI, Uma, NU, Adekunle AA, Airede CE. 2006. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. African Journal of Biotechnology, 5(9): 703-706. https://www.ajol.info/index.php/ajb/article/view/42775/26344

Evidente A, Ricciardiello G, Andolfi A, Sabatini MA, Ganassi S, Altomare C. 2008. Citrantifidiene and citrantifidiol: bioactive metabolites produced by Trichoderma citrinoviride with potential antifeedant activity toward aphids. Journal of Agricultural and Food Chemistry, 56(10): 3569-3573. https://doi.org/10.1021/jf073541h

EPA (United States Environmental Protection Agency). 2016. Integrated Pest Management (IPM) Principles. [fecha de acceso diciembre 2, 2016]. https://www.epa.gov/safepestcontrol/integrated-pest-management-ipm-principles.

FAO (Food and Agriculture Organization of the United States). 2019. Agricultura mundial: hacia los años 2015/2030. Rome (Italia): FAO. http://www.fao.org/3/y3557s/y3557s00.htm

Gakuya D, Itoga S, Mbaria J, Muthee J, Musau J. 2013. Ethnobotanical survey of biopesticides and other medicinal plants traditionally used in Meru central district of Kenya. Journal of Ethnopharmacology, 145(2): 547-553. DOI: 10.1016/j.jep.2012.11.028

García R, Riera R, Zambrano C, Gutiérrez L. 2006. Desarrollo de un fungicida biológico a base de una cepa del hongo Trichoderma harzianum proveniente de la región andina venezolana. Fitosanidad, 10(2): 115-121. https://www.redalyc.org/articulo.oa?id=209116102005

Gavrilescu M, Chisti Y. 2005. Biotechnology a sustainable alternative for chemical industry. Biotechnology Advances, 23 (7-8): 471-499. DOI:10.1016/j.biotechadv.2005.03.004

Ghisalberti EL, Rowland CY. 1993. Antifungal metabolites from Trichoderma harzianum. Journal of Natural Products, 56(10): 1799-1804. https://doi.org/10.1021/np50100a020

Govindarajan M, Jebanesan A, Reetha D. 2005. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Tropical Biomedicine, 22(1): 1-3. http://www.msptm.org/files/1_-_3_Larvicidal_effect_of_extracellular.pdf

Gupta VG, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M, editors. 2014. Biotechnology and biology of Trichoderma. Newnes. Amsterdam: Elsevier. https://doi.org/10.1016/C2012-0-00434-6

Harman GE, Kubicek CP, editores. 2014. Trichoderma and Gliocladium. Basic biology, taxonomy and genetics. Vol. 1. Boca Raton (USA): CRC Press. https://doi.org/10.1201/9781482295320

Hernández-Ochandía D, Rodríguez MG, Peteira B, Miranda I, Arias Y, Martínez B. 2015. Efecto de cepas de Trichoderma asperellum Samuels, Lieckfeldt y Nirenberg sobre el desarrollo del tomate y Meloidogyne incognita (Kofoid y White) Chitwood. Revista de Protección Vegetal, 30(2): 139-147. http://scielo.sld.cu/pdf/rpv/v30n2/rpv08215.pdf

Hoyos-Carvajal L. 2012. Enfermedades de plantas: control biológico. Bogotá: ECOE ediciones.

Infante D, Martínez B, González N, Reyes Y. 2009. Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal, 24(1): 14-21. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522009000100002

International Subcommission on Trichoderma and Hypocrea Taxonomy. 2004. International Commission for the Taxonomy of Fungi (ICTF), International Union of Microbiological Societies (IUMS, Mycology Division). [fecha de acceso septiembre, 2019]. http://www.isth.info/

Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB. 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98(2): 533-544. doi: 10.1007/s00253-013-5344-5

Kong Z, Jing R, Wu Y, Guo Y, Geng Y, Ji J, Zheng C. 2018. Trichodermadiones A and B from the solid culture of Trichoderma atroviride S361, an endophytic fungus in Cephalotaxus fortunei. Fitoterapia, 127: 362-366. doi: 10.1016/j.fitote.2018.04.004

León DCS, Cortés ACP, Sarmiento NCM. 2017. Evaluación de la actividad fungicida e identificación de compuestos orgánicos volátiles liberados por Trichoderma viride. Revista Colombiana de Biotecnología, 19(1): 63-70. DOI: https://doi.org/10.15446/rev.colomb.biote.v19n1.65969

Lorito M. 2006. La biología molecular de las interacciones entre Trichoderma, hongos fitopatógenos y plantas: oportunidades para desarrollar nuevos métodos de control de enfermedades. Fitosanidad 10(2): 139-140.

Marques E, Martins I, Mello SCMD. 2018. Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica, 18(1): e20170418 http://dx.doi.org/10.1590/1676-0611-bn-2017-0418

Martínez B, Infante D, Reyes Y. 2013. Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal, 28(1): 1-11. http://scielo.sld.cu/pdf/rpv/v28n1/rpv01113.pdf

Mona SA, Hashem A, Abd Allah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16(8): 1751-1757. http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(17)61695-2

Mukherjee PK, Horwitz BA, Kenerley CM. 2012. Secondary metabolism in Trichoderma–a genomic perspective. Microbiology, 158(1): 35-45. doi: 10.1099/mic.0.053629-0

Okuda T, Fujiwara A, and Fujiwara M. 1982. Correlation between species of Trichoderma and production patterns of isonitrile antibiotics. Agricultural and Biological Chemistry, 46(7): 1811-1822. https://doi.org/10.1080/00021369.1982.10865345

Pascale A, Vinale F, Manganiello G, Nigro M, Lanzuise S, Ruocco M, Lorito M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92(1): 176-181. DOI: 10.1016/j.cropro.2016.11.010

Pathak J, Pandey A, Singh SP, Sinha RP. 2017. World Agriculture and Impact of Biotechnology. En: Dubey SK, Pandey A, Sangwan RS. Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier. p.1-22. DOI: 10.1016/B978-0-444-63661-4.00001-3

Puño R, Terrazas E, Alvares T, Giménez A, Mendoza L, Smeltekop H, Loza-Murguia M. 2011. Evaluación de la capacidad biocontroladora de metabólicos de Trichoderma inhamatum Bol12 QD sobre cepas nativas de Phytophthora infestans in vitro. Journal of the Selva Andina Research Society, 2(1): 26-33. http://www.scielo.org.bo/pdf/jsars/v2n1/a04.pdf

Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. 2007. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1): 89-123. DOI: 10.1007/s11101-006-9032-2

Ruane J, Sonnino A. 2011. Agricultural biotechnologies in developing countries and their possible contribution to food security. Journal of Biotechnology, 156(4): 356-363. DOI: 10.1016/j.jbiotec.2011.06.013

Saeed MF, Shaheen M, Ahmada I, Zakir A, Nadeema M, Chishti AA, Shahid M, Bakhsh K, Damalas CA. 2017. Pesticide exposure in the local community of Vehari District in Pakistan: An assessment of knowledge and residues in human blood Author links open overlay panel. Science of The Total Environment. 587–588: 137-144. DOI: 10.1016/j.scitotenv.2017.02.086

Saleh RM, Kabli SA, Al‐Garni SM, Al‐Ghamdi MA, Abdel‐Aty AM, Mohamed SA. 2018. Solid‐state fermentation by Trichoderma viride for enhancing phenolic content, antioxidant and antimicrobial activities in ginger. Letters in Applied Microbiology, 67(2):161-167. DOI: 10.1111/lam.13003

Saravanakumar K, Chelliah R, Ramakrishnan SR, Kathiresan K, Oh DH, Wang MH. 2018. Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microbial Pathogenesis, 115: 338-342. DOI: 10.1016/j.micpath.2017.12.081

Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106(9): 996-1004. https://doi.org/10.1017/S0953756202006342

Sivasithamparam K, Ghisalberti EL. 1998. Secondary Metabolism in Trichoderma and Gliocladium. En: Kubicek CP, Harman GE, editores. Trichoderma and Gliocladium. Vol. 1. Londres: Taylor and Francis Ltd. p. 139–191.

Smirnova IP, Karimova EV, Shneider YA. 2017. Antibacterial Activity of L-Lysine-α-Oxidase from the Trichoderma. Bulletin of Experimental Biology and Medicine, 163(6): 777-779. https://doi.org/10.1007/s10517-017-3901-0

Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 81(2): 187-193. DOI: 10.1016/j.mimet.2010.03.011

Sun J, Pei Y, Li E, Li W, Hyde K.D, Yin WB, Liu X. 2016. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Scientific Reports, 6: 37369. DOI: 10.1038/srep37369

Verma, M, Brar SK, Tyagi RD, Surampalli RY, Valero JR. 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37(1): 1-20. DOI: 10.1016/j.bej.2007.05.012

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Lorito M. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72(1-3): 80-86. DOI: 10.1016/j.pmpp.2008.05.005

Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M. 2012. Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications, 7(11): 1545-1550. https://journals.sagepub.com/doi/pdf/10.1177/1934578X1200701133

Yang Z, Yu Z, Lei L, Xia Z, Shao L, Zhang K, Li G. 2012. Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology, 15(4): 647-650. DOI: https://doi.org/10.1163/15685411-00002920

Zeilinger S, Gruber S, Bansal R, Mukherjee PK. 2016. Secondary metabolism in Trichoderma–Chemistry meets genomics. Fungal Biology Reviews, 30(2): 74-90. https://doi.org/10.1016/j.fbr.2016.05.001

Zhang M, Liu JM, Zhao J-L, Li N, Chen R-D, Xie KB, Zhang W-J, Feng KP, Yan Z, Wang N, Dai JG. 2016. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. Chinese Chemical Letters, 27(6): 957-960. DOI: 10.1016/j.cclet.2016.02.008

Zhou P, Wu Z, Tan D, Yang J, Zhou Q, Zeng F, Luo Z. 2017. Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia, 123: 18-22. DOI: 10.1016/j.fitote.2017.09.012

Publicado
2020-02-26
Cómo citar
Mesa Vanegas A. M., Marín Pavas D. A., & Calle Osorno J. (2020). Metabolitos secundarios en Trichoderma spp. y sus aplicaciones biotecnológicas agrícolas. Actualidades Biológicas, 41(111), 1-13. https://doi.org/10.17533/udea.acbi.v41n111a02
Sección
Artículos de revisión