ARNs circulares: moléculas con pasado y futuro

Autores/as

DOI:

https://doi.org/10.17533/udea.acbi.v44n117a03

Palabras clave:

secuencia ALU, backsplicing, esponja de miRNAs

Resumen

Los ARNs circulares (circRNAs) son una clase de ARNs identificados recientemente, que se encuentran altamente expresados en eucariotas y conservados entre especies. Su biogénesis se describe como producto de un proceso llamado backsplicing que ocurre durante la maduración del pre-mRNA, en el que la unión de los sitios dador 3 ́ y aceptor 5 ́ producen una molécula circular. Su estructura de bucle cerrado le confiere mayor estabilidad y resistencia a la degradación por algunas ARNsas en contraste con los ARNs lineales. Se postulan distintas funciones de los circRNAs como: competencia de corte y empalme frente al gen del que derivan, esponjas de micro ARNs, reguladores de la metilación de islas CpG o mediadores en la migración de pAKT al núcleo. Por lo tanto, los circRNAs son considerados importantes reguladores post-transcripcionales de la supervivencia celular y se han utilizado como biomarcadores en enfermedades como el cáncer. Su abundancia en el tejido neural también los relaciona con el desarrollo de distintas patologías del sistema nervioso observadas en personas de mayor edad. El objetivo de esta revisión es resumir conceptos actuales sobre los circRNA en eucariotas, sus posibles funciones y resaltar su importancia en distintos sistemas como cardíaco, nervioso, endocrino y digestivo. Además, se discute su impacto en cardiogénesis, neurodegeneración y cáncer, para entender por qué se les considera una importante herramienta en el campo de la investigación en biología molecular.

|Resumen
= 562 veces | PDF (ENGLISH)
= 343 veces| | HTML (ENGLISH)
= 12 veces| | XML (ENGLISH)
= 6 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Karol Andrea Arizaca Maquera, Fundación Instituto Leloir

Laboratorio de Biología del ARN, Fundación Instituto Leloir (FIL), Buenos Aires, Argentina.

Ana Julia Fernandez Alvarez, Fundación Instituto Leloir

Laboratorio de Biología del ARN, Fundación Instituto Leloir (FIL), Buenos Aires, Argentina.

Citas

Akhter R. (2018). Circular RNA and Alzheimer's Disease. Advances in experimental medicine and biology, 1087, 239–243. https://doi.org/10.1007/978-981-13-1426-1_19

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. (2014 Oct). CircRNA biogenesis competes with pre-mRNA splicing. Molecular Cell., 2;56(1):55-66. https://doi.org/10.1016/j.molcel.2014.08.019

Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner- Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. (2015). Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Scientific Reports, 5: 8057. doi: 10.1038/srep08057.

Chen Ling-Ling & Carmichael Gordon G. (2008). Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle, 7:21, 3294-3301. doi: 10.4161/cc.7.21.6927

Choi, D. C., Chae, Y. J., Kabaria, S., Chaudhuri, A. D., Jain, M. R., Li, H., Mouradian, M. M., & Junn, E. (2014). MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(38), 12725–12737. https://doi.org/10.1523/JNEUROSCI.0985-14.2014

Cocquerelle, C., Daubersies, P., Majérus, M. A., Kerckaert, J. P., & Bailleul, B. (1992). Splicing with inverted order of exons occurs proximal to large introns. The EMBO journal, 11(3), 1095–1098.

Cocquerelle, C., Mascrez, B., Hétuin, D., & Bailleul, B. (1993). Mis-splicing yields circular RNA molecules. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 7(1), 155–160. https://doi.org/10.1096/fasebj.7.1.7678559

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell, 6: 1125 – 1134. doi: 10.1016/j.cell.2015.02.014

Cortés-López, M., Gruner, M. R., Cooper, D. A., Gruner, H. N., Voda, A. I., van der Linden, A. M., & Miura, P. (2018). Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC genomics, 19(1), 8. https://doi.org/10.1186/s12864-017-4386-y

Du, W. W., Yang, W., Chen, Y., Wu, Z. K., Foster, F. S., Yang, Z., Li, X., & Yang, B. B. (2017). Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. European heart journal, 38(18), 1402–1412. https://doi.org/10.1093/eurheartj/ehw001

Du, W. W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., & Yang, B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic acids research, 44(6), 2846–2858. https://doi.org/10.1093/nar/gkw027

Dubin RA, Kazmi MA, Ostrer H. (1995). Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene, 167: 245 – 248. https://doi.org/10.1016/0378-1119(95)00639-7

Dudekula, D. B., Panda, A. C., Grammatikakis, I., De, S., Abdelmohsen, K., & Gorospe, M. (2016). CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA biology, 13(1), 34–42. https://doi.org/10.1080/15476286.2015.1128065

Errichelli L., Dini Modigliani S., Laneve P., Colantoni A., Legnini I., Capauto D., Rosa A., De Santis R., Scarfo R., Peruzzi G., Lu L., Caffarelli E., Shneider Neil A., Morlando M., & Bozzoni I. (2017). FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 8: 14741. https://doi.org/10.1038/ncomms14741

F. Taïbi, V. Metzinger-Le Meuth, Z.A. Massy, L. Metzinger. (2014). MiR-223: an inflammatory oncomiR enters the cardiovascular field. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842 1001–1009. https://doi.org/10.1016/j.bbadis.2014.03.005

Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. (2016 Mar). The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One, 21;11(3): e0151753. doi: 10.1371/journal.pone.0151753

Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. (2016 Dec). CircRNA accumulation in the aging mouse brain. Scientific Reports. 13; 6:38907. doi: 10.1038/srep38907

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388. https://doi.org/10.1038/nature11993

Huang, C., Liang, D., Tatomer, D. C., & Wilusz, J. E. (2018). A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes & development, 32(9-10), 639–644. https://doi.org/10.1101/gad.314856.118

Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., & Rajewsky, N. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell reports, 10(2), 170–177. https://doi.org/10.1016/j.celrep.2014.12.019

Jeck William R. & Sharpless Norman E. (2014 May). Detecting and characterizing circular RNAs. Nat Biotechnol., 32(5):453-61. doi: 10.1038/nbt.2890

Jeck William R., Sorrentino Jessica A., Wang Kai, Slevin Michael K., Burd Christin E., Liu Jinze, Marzluff William F., & Sharpless Norman E. (2013 Feb). Circular RNAs are abundant, conserved and associated with ALU repeats. RNA., 19(2):141-57. doi: 10.1261/rna.035667.112

Jia, R., Xiao, M.-S., Li, Z., Shan, G., & Huang, C. (2019). Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discovery, 5(1). doi:10.1038/s41421-019-0113-y

Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W., Im, J. Y., & Mouradian, M. M. (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13052–13057. https://doi.org/10.1073/pnas.0906277106

Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., & Muñoz, M.J. (2013 Mar). Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Reviews Molecular Cell Biology., 14(3):153-165. doi: 10.1038/nrm3525

Kos, A., Dijkema, R., Arnberg, A. C., van der Meide, P. H., & Schellekens, H. (1986). The hepatitis delta (delta) virus possesses a circular RNA. Nature, 323(6088), 558–560. https://doi.org/10.1038/323558a0

Kreahling J. (2004). The origins and implications of Aluternative splicing. Trends in Genetics, 20(1),1–4. doi:10.1016/j.tig.2003.11.001

Lee, E., Elhassan, S., Lim, G., Kok, W. H., Tan, S. W., Leong, E. N., Tan, S. H., Chan, E., Bhattamisra, S. K., Rajendran, R., & Candasamy, M. (2019). The roles of circular RNAs in human development and diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 111, 198–208. https://doi.org/10.1016/j.biopha.2018.12.052

Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., Zhu, P., Chang, Z., Wu, Q., Zhao, Y., Jia, Y., Xu, P., Liu, H., & Shan, G. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature structural & molecular biology, 22(3), 256–264. https://doi.org/10.1038/nsmb.2959

Li, Z., Kearse, M. G., & Huang, C. (2018). The nuclear export of circular RNAs is primarily defined by their length. RNA Biology, 16:1, 1-4. doi:10.1080/15476286.2018.1557498

Liu, B. H., Zhang, B. B., Liu, X. Q., Zheng, S., Dong, K. R., & Dong, R. (2018). Expression Profiling Identifies Circular RNA Signature in Hepatoblastoma. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 45(2), 706–719. https://doi.org/10.1159/000487163

Lukiw W. J. (2013). Circular RNA (circRNA) in Alzheimer's disease (AD). Frontiers in genetics, 4, 307. https://doi.org/10.3389/fgene.2013.00307

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338. https://doi.org/10.1038/nature11928

Niaz, S., & Hussain, M. U. (2018). Role of GW182 protein in the cell. The International Journal of Biochemistry & Cell Biology, 101, 29–38. doi: 10.1016/j.biocel.2018.05.009

Ning, S., Wei, W., Li, J., Hou, B., Zhong, J., Xie, Y., Liu, H., Mo, X., Chen, J., & Zhang, L. (2018). Clinical significance and diagnostic capacity of serum TK1, CEA, CA 19-9 and CA 72-4 levels in gastric and colorectal cancer patients. Journal of Cancer, 9(3), 494–501. https://doi.org/10.7150/jca.21562

Nishikura K. (2010). Functions and regulation of RNA editing by ADAR deaminases. Annual review of biochemistry, 79, 321–349. https://doi.org/10.1146/annurev-biochem-060208-105251

Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., Shenzis, S., Samson, M., Dittmar, G., Landthaler, M., Chekulaeva, M., Rajewsky, N., & Kadener, S. (2017). Translation of CircRNAs. Molecular cell, 66(1), 9–21.e7. https://doi.org/10.1016/j.molcel.2017.02.021

Patop, I. L., Wüst, S., & Kadener, S. (2019). Past, present, and future of circRNAs. The EMBO Journal, 38:e100836. doi:10.15252/embj.2018100836

Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R., Herzog, M., Schreyer, L., Papavasileiou, P., Ivanov, A., Öhman, M., Refojo, D., Kadener, S., & Rajewsky, N. (2015). Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular cell, 58(5), 870–885. https://doi.org/10.1016/j.molcel.2015.03.027

Salgia, S. R., Singh, S. K., Gurha, P., & Gupta, R. (2003). Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and circularization of introns. RNA (New York, N.Y.), 9(3), 319–330. https://doi.org/10.1261/rna.2118203

Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., & Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One.;7(2): e30733. https://doi.org/10.1371/journal.pone.0030733

Sang, Q., Liu, X., Wang, L., Qi, L., Sun, W., Wang, W., Sun, Y., & Zhang, H. (2018). CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson's disease by targeting miR-7. Aging, 10(6), 1281–1293. https://doi.org/10.18632/aging.101466

Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856. https://doi.org/10.1073/pnas.73.11.3852

Shao, Y., & Chen, Y. (2016). Roles of Circular RNAs in Neurologic Disease. Frontiers in molecular neuroscience, 9, 25. https://doi.org/10.3389/fnmol.2016.00025

Sun, X., Wang, L., Ding, J., Wang, Y., Wang, J., Zhang, X., Che, Y., Liu, Z., Zhang, X., Ye, J., Wang, J., Sablok, G., Deng, Z., & Zhao, H. (2016). Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS letters, 590(20), 3510–3516. https://doi.org/10.1002/1873-3468.12440

Suzuki, H., Zuo, Y., Wang, J., Zhang, M. Q., Malhotra, A., & Mayeda, A. (2006). Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic acids research, 34(8), e63. https://doi.org/10.1093/nar/gkl151

Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J. (2015). Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biology, 16: 245. https://doi.org/10.1186/s13059-015-0801-3

Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R., & Lai, E. C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell reports, 9(5), 1966–1980. https://doi.org/10.1016/j.celrep.2014.10.062

Xu Y. (2017). An overview of the main circRNA databases. Non-coding RNA Investig., 1:22. doi: 10.21037/ncri.2017.11.05

Ye CY, Chen L, Liu C, Zhu QH, Fan L. (2015) Widespread noncoding circular RNAs in plants. New Phytol., 208: 88 – 95. doi: 10.1111/nph.13585

You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., Akbalik, G., Wang, M., Glock, C., Quedenau, C., Wang, X., Hou, J., Liu, H., Sun, W., Sambandan, S., Chen, T., Schuman, E. M., & Chen, W. (2015). Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature neuroscience, 18(4), 603–610. https://doi.org/10.1038/nn.3975

Yu C-Y, Li T-C, Wu Y-Y, Yeh C-H, Chiang W, Chuang C-Y, Kuo H-C. (2017). The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nature Communications, 8: 1149. doi: 10.1038/s41467-017-01216-w

Zeng, Y., Du, W. W., Wu, Y., Yang, Z., Awan, F. M., Li, X., Yang, W., Zhang, C., Yang, Q., Yee, A., Chen, Y., Yang, F., Sun, H., Huang, R., Yee, A. J., Li, R. K., Wu, Z., Backx, P. H., & Yang, B. B. (2017). A Circular RNA Binds to and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics, 29;7(16):3842-3855. doi: 10.7150/thno.19764

Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L., & Chen, L. L. (2013). Circular intronic long noncoding RNAs. Molecular cell, 51(6), 792–806. https://doi.org/10.1016/j.molcel.2013.08.017

Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Lyu, D., Li, Y., Shi, G., Liang, L., Gu, J., He, X., & Huang, S. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7, 11215. https://doi.org/10.1038/ncomms11215

Publicado

2022-04-26

Cómo citar

Arizaca Maquera, K. A., & Fernandez - Àlvarez, A. J. (2022). ARNs circulares: moléculas con pasado y futuro. Actualidades Biológicas, 44(117), 1–12. https://doi.org/10.17533/udea.acbi.v44n117a03

Número

Sección

Artículos de revisión