ARNs circulares: moléculas con pasado y futuro
DOI:
https://doi.org/10.17533/udea.acbi.v44n117a03Palabras clave:
secuencia ALU, backsplicing, esponja de miRNAsResumen
Los ARNs circulares (circRNAs) son una clase de ARNs identificados recientemente, que se encuentran altamente expresados en eucariotas y conservados entre especies. Su biogénesis se describe como producto de un proceso llamado backsplicing que ocurre durante la maduración del pre-mRNA, en el que la unión de los sitios dador 3 ́ y aceptor 5 ́ producen una molécula circular. Su estructura de bucle cerrado le confiere mayor estabilidad y resistencia a la degradación por algunas ARNsas en contraste con los ARNs lineales. Se postulan distintas funciones de los circRNAs como: competencia de corte y empalme frente al gen del que derivan, esponjas de micro ARNs, reguladores de la metilación de islas CpG o mediadores en la migración de pAKT al núcleo. Por lo tanto, los circRNAs son considerados importantes reguladores post-transcripcionales de la supervivencia celular y se han utilizado como biomarcadores en enfermedades como el cáncer. Su abundancia en el tejido neural también los relaciona con el desarrollo de distintas patologías del sistema nervioso observadas en personas de mayor edad. El objetivo de esta revisión es resumir conceptos actuales sobre los circRNA en eucariotas, sus posibles funciones y resaltar su importancia en distintos sistemas como cardíaco, nervioso, endocrino y digestivo. Además, se discute su impacto en cardiogénesis, neurodegeneración y cáncer, para entender por qué se les considera una importante herramienta en el campo de la investigación en biología molecular.
Descargas
Citas
Akhter R. (2018). Circular RNA and Alzheimer's Disease. Advances in experimental medicine and biology, 1087, 239–243. https://doi.org/10.1007/978-981-13-1426-1_19
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. (2014 Oct). CircRNA biogenesis competes with pre-mRNA splicing. Molecular Cell., 2;56(1):55-66. https://doi.org/10.1016/j.molcel.2014.08.019
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner- Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. (2015). Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Scientific Reports, 5: 8057. doi: 10.1038/srep08057.
Chen Ling-Ling & Carmichael Gordon G. (2008). Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle, 7:21, 3294-3301. doi: 10.4161/cc.7.21.6927
Choi, D. C., Chae, Y. J., Kabaria, S., Chaudhuri, A. D., Jain, M. R., Li, H., Mouradian, M. M., & Junn, E. (2014). MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(38), 12725–12737. https://doi.org/10.1523/JNEUROSCI.0985-14.2014
Cocquerelle, C., Daubersies, P., Majérus, M. A., Kerckaert, J. P., & Bailleul, B. (1992). Splicing with inverted order of exons occurs proximal to large introns. The EMBO journal, 11(3), 1095–1098.
Cocquerelle, C., Mascrez, B., Hétuin, D., & Bailleul, B. (1993). Mis-splicing yields circular RNA molecules. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 7(1), 155–160. https://doi.org/10.1096/fasebj.7.1.7678559
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell, 6: 1125 – 1134. doi: 10.1016/j.cell.2015.02.014
Cortés-López, M., Gruner, M. R., Cooper, D. A., Gruner, H. N., Voda, A. I., van der Linden, A. M., & Miura, P. (2018). Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC genomics, 19(1), 8. https://doi.org/10.1186/s12864-017-4386-y
Du, W. W., Yang, W., Chen, Y., Wu, Z. K., Foster, F. S., Yang, Z., Li, X., & Yang, B. B. (2017). Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. European heart journal, 38(18), 1402–1412. https://doi.org/10.1093/eurheartj/ehw001
Du, W. W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., & Yang, B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic acids research, 44(6), 2846–2858. https://doi.org/10.1093/nar/gkw027
Dubin RA, Kazmi MA, Ostrer H. (1995). Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene, 167: 245 – 248. https://doi.org/10.1016/0378-1119(95)00639-7
Dudekula, D. B., Panda, A. C., Grammatikakis, I., De, S., Abdelmohsen, K., & Gorospe, M. (2016). CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA biology, 13(1), 34–42. https://doi.org/10.1080/15476286.2015.1128065
Errichelli L., Dini Modigliani S., Laneve P., Colantoni A., Legnini I., Capauto D., Rosa A., De Santis R., Scarfo R., Peruzzi G., Lu L., Caffarelli E., Shneider Neil A., Morlando M., & Bozzoni I. (2017). FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 8: 14741. https://doi.org/10.1038/ncomms14741
F. Taïbi, V. Metzinger-Le Meuth, Z.A. Massy, L. Metzinger. (2014). MiR-223: an inflammatory oncomiR enters the cardiovascular field. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842 1001–1009. https://doi.org/10.1016/j.bbadis.2014.03.005
Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. (2016 Mar). The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One, 21;11(3): e0151753. doi: 10.1371/journal.pone.0151753
Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. (2016 Dec). CircRNA accumulation in the aging mouse brain. Scientific Reports. 13; 6:38907. doi: 10.1038/srep38907
Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388. https://doi.org/10.1038/nature11993
Huang, C., Liang, D., Tatomer, D. C., & Wilusz, J. E. (2018). A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes & development, 32(9-10), 639–644. https://doi.org/10.1101/gad.314856.118
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., & Rajewsky, N. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell reports, 10(2), 170–177. https://doi.org/10.1016/j.celrep.2014.12.019
Jeck William R. & Sharpless Norman E. (2014 May). Detecting and characterizing circular RNAs. Nat Biotechnol., 32(5):453-61. doi: 10.1038/nbt.2890
Jeck William R., Sorrentino Jessica A., Wang Kai, Slevin Michael K., Burd Christin E., Liu Jinze, Marzluff William F., & Sharpless Norman E. (2013 Feb). Circular RNAs are abundant, conserved and associated with ALU repeats. RNA., 19(2):141-57. doi: 10.1261/rna.035667.112
Jia, R., Xiao, M.-S., Li, Z., Shan, G., & Huang, C. (2019). Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discovery, 5(1). doi:10.1038/s41421-019-0113-y
Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W., Im, J. Y., & Mouradian, M. M. (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13052–13057. https://doi.org/10.1073/pnas.0906277106
Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., & Muñoz, M.J. (2013 Mar). Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Reviews Molecular Cell Biology., 14(3):153-165. doi: 10.1038/nrm3525
Kos, A., Dijkema, R., Arnberg, A. C., van der Meide, P. H., & Schellekens, H. (1986). The hepatitis delta (delta) virus possesses a circular RNA. Nature, 323(6088), 558–560. https://doi.org/10.1038/323558a0
Kreahling J. (2004). The origins and implications of Aluternative splicing. Trends in Genetics, 20(1),1–4. doi:10.1016/j.tig.2003.11.001
Lee, E., Elhassan, S., Lim, G., Kok, W. H., Tan, S. W., Leong, E. N., Tan, S. H., Chan, E., Bhattamisra, S. K., Rajendran, R., & Candasamy, M. (2019). The roles of circular RNAs in human development and diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 111, 198–208. https://doi.org/10.1016/j.biopha.2018.12.052
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., Zhu, P., Chang, Z., Wu, Q., Zhao, Y., Jia, Y., Xu, P., Liu, H., & Shan, G. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature structural & molecular biology, 22(3), 256–264. https://doi.org/10.1038/nsmb.2959
Li, Z., Kearse, M. G., & Huang, C. (2018). The nuclear export of circular RNAs is primarily defined by their length. RNA Biology, 16:1, 1-4. doi:10.1080/15476286.2018.1557498
Liu, B. H., Zhang, B. B., Liu, X. Q., Zheng, S., Dong, K. R., & Dong, R. (2018). Expression Profiling Identifies Circular RNA Signature in Hepatoblastoma. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 45(2), 706–719. https://doi.org/10.1159/000487163
Lukiw W. J. (2013). Circular RNA (circRNA) in Alzheimer's disease (AD). Frontiers in genetics, 4, 307. https://doi.org/10.3389/fgene.2013.00307
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338. https://doi.org/10.1038/nature11928
Niaz, S., & Hussain, M. U. (2018). Role of GW182 protein in the cell. The International Journal of Biochemistry & Cell Biology, 101, 29–38. doi: 10.1016/j.biocel.2018.05.009
Ning, S., Wei, W., Li, J., Hou, B., Zhong, J., Xie, Y., Liu, H., Mo, X., Chen, J., & Zhang, L. (2018). Clinical significance and diagnostic capacity of serum TK1, CEA, CA 19-9 and CA 72-4 levels in gastric and colorectal cancer patients. Journal of Cancer, 9(3), 494–501. https://doi.org/10.7150/jca.21562
Nishikura K. (2010). Functions and regulation of RNA editing by ADAR deaminases. Annual review of biochemistry, 79, 321–349. https://doi.org/10.1146/annurev-biochem-060208-105251
Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., Shenzis, S., Samson, M., Dittmar, G., Landthaler, M., Chekulaeva, M., Rajewsky, N., & Kadener, S. (2017). Translation of CircRNAs. Molecular cell, 66(1), 9–21.e7. https://doi.org/10.1016/j.molcel.2017.02.021
Patop, I. L., Wüst, S., & Kadener, S. (2019). Past, present, and future of circRNAs. The EMBO Journal, 38:e100836. doi:10.15252/embj.2018100836
Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R., Herzog, M., Schreyer, L., Papavasileiou, P., Ivanov, A., Öhman, M., Refojo, D., Kadener, S., & Rajewsky, N. (2015). Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular cell, 58(5), 870–885. https://doi.org/10.1016/j.molcel.2015.03.027
Salgia, S. R., Singh, S. K., Gurha, P., & Gupta, R. (2003). Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and circularization of introns. RNA (New York, N.Y.), 9(3), 319–330. https://doi.org/10.1261/rna.2118203
Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., & Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One.;7(2): e30733. https://doi.org/10.1371/journal.pone.0030733
Sang, Q., Liu, X., Wang, L., Qi, L., Sun, W., Wang, W., Sun, Y., & Zhang, H. (2018). CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson's disease by targeting miR-7. Aging, 10(6), 1281–1293. https://doi.org/10.18632/aging.101466
Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856. https://doi.org/10.1073/pnas.73.11.3852
Shao, Y., & Chen, Y. (2016). Roles of Circular RNAs in Neurologic Disease. Frontiers in molecular neuroscience, 9, 25. https://doi.org/10.3389/fnmol.2016.00025
Sun, X., Wang, L., Ding, J., Wang, Y., Wang, J., Zhang, X., Che, Y., Liu, Z., Zhang, X., Ye, J., Wang, J., Sablok, G., Deng, Z., & Zhao, H. (2016). Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS letters, 590(20), 3510–3516. https://doi.org/10.1002/1873-3468.12440
Suzuki, H., Zuo, Y., Wang, J., Zhang, M. Q., Malhotra, A., & Mayeda, A. (2006). Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic acids research, 34(8), e63. https://doi.org/10.1093/nar/gkl151
Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J. (2015). Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biology, 16: 245. https://doi.org/10.1186/s13059-015-0801-3
Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R., & Lai, E. C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell reports, 9(5), 1966–1980. https://doi.org/10.1016/j.celrep.2014.10.062
Xu Y. (2017). An overview of the main circRNA databases. Non-coding RNA Investig., 1:22. doi: 10.21037/ncri.2017.11.05
Ye CY, Chen L, Liu C, Zhu QH, Fan L. (2015) Widespread noncoding circular RNAs in plants. New Phytol., 208: 88 – 95. doi: 10.1111/nph.13585
You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., Akbalik, G., Wang, M., Glock, C., Quedenau, C., Wang, X., Hou, J., Liu, H., Sun, W., Sambandan, S., Chen, T., Schuman, E. M., & Chen, W. (2015). Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature neuroscience, 18(4), 603–610. https://doi.org/10.1038/nn.3975
Yu C-Y, Li T-C, Wu Y-Y, Yeh C-H, Chiang W, Chuang C-Y, Kuo H-C. (2017). The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nature Communications, 8: 1149. doi: 10.1038/s41467-017-01216-w
Zeng, Y., Du, W. W., Wu, Y., Yang, Z., Awan, F. M., Li, X., Yang, W., Zhang, C., Yang, Q., Yee, A., Chen, Y., Yang, F., Sun, H., Huang, R., Yee, A. J., Li, R. K., Wu, Z., Backx, P. H., & Yang, B. B. (2017). A Circular RNA Binds to and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics, 29;7(16):3842-3855. doi: 10.7150/thno.19764
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L., & Chen, L. L. (2013). Circular intronic long noncoding RNAs. Molecular cell, 51(6), 792–806. https://doi.org/10.1016/j.molcel.2013.08.017
Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Lyu, D., Li, Y., Shi, G., Liang, L., Gu, J., He, X., & Huang, S. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7, 11215. https://doi.org/10.1038/ncomms11215
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Actualidades Biológicas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores autorizan de forma exclusiva, a la revista Actualidades Biológicas a editar y publicar el manuscrito sometido en caso de ser recomendada y aceptada su publicación, sin que esto represente costo alguno para la Revista o para la Universidad de Antioquia.
Todas las ideas y opiniones contenidas en los artículos son de entera responsabilidad de los autores. El contenido total de los números o suplementos de la revista, está protegido bajo Licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, por lo que no pueden ser empleados para usos comerciales, pero sí para fines educativos. Sin embargo, por favor, mencionar como fuente a la revista Actualidades Biológicas y enviar una copia de la publicación en que fue reproducido el contenido.