Formación de trampas extracelulares de neutrófilos humanos in vitro: descripción de un método

  • Lizet Jazmín Pérez Zapata Universidad de Antioquia
  • Ana María Trejos Ramírez Universidad de Antioquia
  • Andrés Augusto Arias Sierra Universidad de Antioquia
  • Juan Álvaro López Quintero Universidad de Antioquía
Palabras clave: estandarización, neutrófilos, NETs, netosis, Phorbol 12-myristate 13-acetate, trampas extracelulares de neutrófilos

Resumen

Introducción: las trampas extracelulares de neutrófilo (NETs) son estructuras en forma de red compuestas de ADN y proteínas granulares que el neutrófilo libera al espacio extracelular en respuesta a diferentes estímulos. La NETosis es un mecanismo de muerte celular, que además cumple una función microbicida destruyendo o inhibiendo el crecimiento de microorganismos.

Objetivo: describir el proceso para inducir, visualizar y cuantificar la formación de NETs en neutrófilos humanos.

Métodos: se aislaron neutrófilos de sangre periférica de individuos sanos y se indujo la producción de NETs utilizando diferentes concentraciones de PMA a determinados tiempos. La liberación de ADN se cuantificó por espectrofluorimetría y se evaluó la morfología de las NETs utilizando microscopía de fluorescencia. Los análisis estadísticos se realizaron con los programas SPSS 17.02 y GraphPad Prism 6.

Resultados y conclusiones: en el presente trabajo se describe un método que sirve para inducir NETs utilizando neutrófilos humanos, el cual es comparable con otros estudios descritos en la literatura. Los resultados y técnicas descritas aquí se pueden aplicar en ensayos que busquen evaluar el proceso de formación de NETs in vitro y tiene como intensión brindar herramientas metodológicas a los investigadores que deseen estudiar este proceso celular.

|Resumen
= 347 veces | PDF
= 913 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Lizet Jazmín Pérez Zapata, Universidad de Antioquia

Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia.

Ana María Trejos Ramírez, Universidad de Antioquia

Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia.

Andrés Augusto Arias Sierra, Universidad de Antioquia

Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia.

Juan Álvaro López Quintero, Universidad de Antioquía
Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia.

Citas

Kobayashi Y. Neutrophil biology: an update. Excli J. 2015;14:220-227. doi:10.17179/excli2015-102

Brinkmann V, Reichar U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracel-lular traps kill bacteria. Science. 2004;303:1532-1535. doi:10.1126/science.1092385303/5663/1532

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schul-ze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231-241. doi:jcb.200606027 [pii]10.1083/jcb.200606027

Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223. doi:DOI

1146/annurev.immunol.23.021704.115653

Guimaraes-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, et al. Leishmania amazonen-sis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci. 2009;106:6748-6753. doi:10.1073/pnas.09002261060900226106

Kumar S, Gupta E, Kaushik S, Jyoti A. Neutrophil Extracellular Traps: Formation and Involvement in Disease Progression. Iran J Allergy Asthma Immunol. 2008;17:208-220.

Knight JS, Kaplan MJ. Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr Opin Rheumatol. 2012;24:441-450. doi:10.1097/BOR.0b013e3283546703

Pinegin B, Vorobjeva N, Pinegin V. Neutrophil ex-tracellular traps and their role in the development of chronic inflammation and autoimmunity. Au-toimmun Rev. 2015;14:633-640. doi:10.1016/j.aut-rev.2015.03.002

Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may pro-mote thromboinflammation and the thrombophilic state associated with the disease. Annals of the Rheu-matic Diseases. 2014;73(10):1854-63. doi:10.1136/an-nrheumdis-2013-203430

Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I,et al. Myeloperoxidase is re-quired for neutrophil extracellular trap formation: im-plications for innate immunity. Blood. 2011;117;953-959. doi:10.1182/blood-2010-06-290171

Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutro-phil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71:4179-4194. doi:10.1007/s00018-014-1683-3.

Remijsen Q, Berghe TV, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, et al. Neutrophil extra-cellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21:290-304. doi:10.1038/cr.2010.150cr2010150

Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their pres-ence in preeclampsia. Hum Immunol. 2005;66:1146-1154. doi:S0198-8859(05)00450-7 [pii]10.1016/j.hu-mimm.2005.11.003

Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187:490-500. doi:10.4049/jimmu-nol.1100123 jimmunol.1100123

Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2016;185:7413-7425. doi:10.4049/jimmunol.1000675 jimmu-nol.1000675

Bianchi M, Hakkim A, Brinkmann V, Siler U, Se-ger RA, Zychlinsky A, et al. Restoration of NET formation by gene therapy in CGD controls asper-gillosis. Blood. 2009;114:2619-2622. doi:10.1182/blood-2009-05-221606 blood-2009-05-221606

Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, Thywißen A, et al. Production of ex-tracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010;6(4):e1000873. doi:10.1371/jour-nal.ppat.1000873

Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermo-silla C. Neutrophil extracellular trap formation as in-nate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol Immunopathol. 2010;133: 1-8. doi:10.1016/j.vetimm.2009.06.012 S0165-2427(09)00210-4

Saitoh T, Komano J, Saitoh Y, Misawa T, Takaha-ma M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immu-nodeficiency virus-1. Cell Host Microbe. 2012;12:109-116. doi:10.1016/j.chom.2012.05.015 S1931-3128(12)00201-6

Wardini AB, Guimaraes-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C, et al. Char-acterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol. 2010;91:259-264. doi:10.1099/vir.0.014613-0 vir.0.014613-0

Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205-213. doi:10.1083/jcb.200806072 jcb.200806072

Papayannopoulos V, Metzler KD, Hakkim A, Zychl-insky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677-691. doi:10.1083/jcb.201006052

Metzler K, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-contain-ing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports. 2014;8:883-896. doi:10.1016/j.celrep.2014.06.044

Coelho LP, Pato C, Friães A, Neumann A, von Köc-kritz-Blickwede M, Ramirez M, et al. Automatic determination of NET (neutrophil extracellular traps) coverage in fluorescent microscopy images. Bioinfor-matics. 2015;31: 2364-2370. doi:10.1093/bioinformat-ics/btv156

Rebernick R, Fahmy L, Glover C, Bawadekar M, Shim D, Holmes CL, et al. DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neu-trophil Extracellular Traps in Fluorescent Microscope Images. Biol Proced Online. 2018;20(7). doi:10.1186/s12575-018-0072-y

Ginley BG, Emmons T, Lutnick B, Urban CF, Segal BH, Sarder P. Computational detection and quantifi-cation of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy. Sci Rep. 2017;7:17755. doi:10.1038/s41598-017-18099-y

Zhao W, Fogg DK, Kaplan MJ. A novel image-based quantitative method for the characterization of NETosis. J Immunol Methods. 2015;423:104-110. doi:10.1016/j.jim.2015.04.027

Najmeh, S, Cools-Lartigue J, Giannias B, Spicer J, Ferri LE. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. JoVE. 2015;98. doi:10.3791/52687

Gavillet M. Martinod K, Renella R, Harris C, Shapi-ro NI, Wagner DD, et al. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. American Journal of Hematology. 2015;90(12):1155-1158. doi:10.1002/ajh.24185

Vong L, Sherman PM, Glogauer M. Quantification and visualization of neutrophil extracellular traps (NETs) from murine bone marrow-derived neutrophils. Methods Mol Biol. 2013;1031:41-50. doi:10.1007/978-1-62703-481-4_5

Quinn MT, Deleo F Bokoch GM. in Methods in mo-lecular biology. Totowa: Humana Press; 2007.

Hu Y. Isolation of human and mouse neutrophils ex vivo and in vitro. Methods in Molecular Biology. 2012;844:101-113. doi:10.1007/978-1-61779-527-5_7

Lundqvist H, Follin P, Khalfan L, Dahlgren C. Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told. J Leukoc Biol. 1996;59:270-279.

Karlsson A, Nixon JB, McPhail LC. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: de-pendent or independent of phosphatidylinositol 3-ki-nase. J Leukoc Biol. 2000;67:396-404.

Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M. The Impact of Various Reactive Oxygen Species on the Formation of Neutrophil Extracel-lular Traps. Mediat Inflamm. 2012. doi:Artn 8491

10.1155/2012/84913636. Bjornsdottir H, Welin A, Michaëlsson E, Osla V, Berg S, Christenson K, et al. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radical Bio Med. 2015;89:1024-1035. doi:10.1016/j.freerad-biomed.2015.10.398

Keshari RS, Verma A, Barthwal MK, Dikshit M. Re-active oxygen species-induced activation of ERK and p38 MAPK mediates PMA-inducedNETs release from human neutrophils. Journal of Cellular Biochemistry. 2013;114: 532-540. doi:10.1002/jcb.24391

Parker H, Dragunow M, Hampton M, Kettle AJ, Win-terbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap for-mation differ depending on the stimulus. J Leukoc Biol. 2012; 92:841-849. doi:10.1189/jlb.1211601

Arai Y, Nishinaka Y, Arai T, Morita M, Mizugishi K, Adachi S, et al. Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochem Biophys Res Commun. 2014;443:556-561. doi:10.1016/j.bbrc.2013.12.007

Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neu-trophil extracellular trap induction requires mobili-zation of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PloS One. 2014:9(5). e97088. doi:10.1371/journal.pone.009708841. Köckritz-Blickwede M, Chow O, Ghochani M, Chow O, Ghochani M, Nizet V. Visualization and functional evaluation of phagocyte extracellular traps. Methods in Microbiology. 2010;37:139-160.

Rodriguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, Lopez-Villegas EO, Sanchez-Gar-cia FJ. Metabolic requirements for neutrophil extracel-lular traps formation. Immunology. 2015;145:213-224. doi:10.1111/imm.12437

Urban CF, Ermert D, Schmid M, Abu-Abed U, Goos-mann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5(10). e1000639. doi:10.1371/jour-nal.ppat.1000639

Krautgartner WD, Klappacher M, Hannig M, Obermayer A, Hartl D, Marcos V, et al. Fibrin mimics neutrophil extracellular traps in SEM. Ultrastructural Pathology. 2010;34:226-231. doi:10.3109/01913121003725721

Lebaron P, Catala P, Parthuisot N. Effectiveness of SY-TOX Green stain for bacterial viability assessment. Ap-plied and Environmental Microbiology. 1998;64:2697-2700.

Marin-Esteban, V, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil ex-tracellular traps that kill bacteria and damage hu-man enterocyte-like cells. Infection and Immunity. 2012;80(5):1891-9. doi:10.1128/IAI.00050-12

Barrientos L, Marin-Esteba V, de Chaisemartin L, Sandre C, Bianchini E, Nicolas V, et al. An improved strategy to recover large fragments of functional hu-man neutrophil extracellular traps. Frontiers in Immu-nology. 2013;4:66. doi:10.3389/fimmu.2013.00166

Brinkmann V, Goosmann C, Kuhn LI, Zychlinsky A. Automatic quantification of in vitro NET formation. Frontiers in Immunology; 2012;3:413. doi:10.3389/fimmu.2012.00413

Gonzalez AS, Bardoel BW, Harbort CJ, Zychlins-ky A. Induction and quantification of neutrophil extracellular traps. Methods in Molecular Biology. 2014;1124:307-318. doi:10.1007/978-1-62703-845-4_20

Publicado
2020-01-08
Cómo citar
Pérez Zapata L. J., Trejos Ramírez A. M., Arias Sierra A. A., & López Quintero J. Álvaro. (2020). Formación de trampas extracelulares de neutrófilos humanos in vitro: descripción de un método. Hechos Microbiológicos, 10(1-2). https://doi.org/10.17533/udea.hm.v10n1a01
Sección
Artículos de investigación original