Wing form differences of a Colombian population of Anopheles(Nyssorhynchus) nuneztovari Gabaldón, 1940 between the dry and rainy seasons

Authors

  • Camilo Orozco Araque University of Antioquia
  • Margarita M. Correa Ochoa University of Antioquia
  • Giovan F. Gómez University of Antioquia, Antioquia Institute of Technology

DOI:

https://doi.org/10.17533/udea.hm.333640

Keywords:

Anopheles nuneztovari, geometric morphometrics, wing, phenotype, seasons, Colombia

Abstract

Introduction: The role of  Anopheles nuneztovari Ga-baldón 1940 as a malaria vector is partially related to its capacity to adapt to diverse environmental condi-tions. In this context, the anatomy of  some structures such as wings, essential for flying, could vary over a short period, as a response to climatic variations.

Methods:  The  wing  form  (size  and  shape)  of   an  An. nuneztovari  population of  Tierralta, Córdoba was compared during the rainy and dry seasons. Twenty-one  landmarks  were  digitized  on  the  left  wing  and  wing form was analyzed by geometric morphometrics.

Results: There was a significant difference on the average wing size between seasons (p = 0.007), though not on variance (p = 0.85); mosquitoes showed a sma-ller  wing  size  during  the  rainy  season.    Regarding  mean wing shape, there was a statistically significant difference between seasons (p < 0.0001), and the co-rrect assignment of  the specimens by climate season was  65%  for  the  dry  season  and  70%  for  the  rainy  season.

Conclusions: The results suggest a seasonal effect on the wing shape of  An. nuneztovari. Further evalua-tion  is  recommended  to  include  samples  of   a  larger  number of  populations for both seasons.

|Abstract
= 267 veces | PDF (ESPAÑOL (ESPAÑA))
= 130 veces|

Downloads

Download data is not yet available.

Author Biographies

Camilo Orozco Araque, University of Antioquia

Molecular Microbiology Group, School of Microbiology, University of Antioquia.

Margarita M. Correa Ochoa, University of Antioquia

Molecular Microbiology Group, School of Microbiology, University of Antioquia.

Giovan F. Gómez, University of Antioquia, Antioquia Institute of Technology

Molecular Microbiology Group, School of Microbiology, University of Antioquia. Faculty of Law and Forensic Sciences, Forensic and Health Sciences Research Group, Antioquia Institute of Technology.

References

Mirabello L, Conn JE. Population analysis using the nuclear white gene detects Pliocene/Pleistocene linea-ge divergence within Anophelesnuneztovari in South America. Med Vet Entomol. 2008;22(2):109-19.

Montoya-Lerma J, Solarte YA, Giraldo-Calderón GI, Quiñones ML, Ruiz-López F, Wilkerson RC, et al. Ma-laria vector species in Colombia: A review. Mem Inst Oswaldo Cruz. 2011;106(Suppl. I):223-38.

Gutierrez LA, Gonzalez JJ, Gomez GF, Castro MI, Ro-sero DA, Luckhart S, et al. Species composition and natural infectivity of anthropophilic Anopheles (Dipte-ra: Culicidae) in the states of Córdoba and Antioquia, Northwestern Colombia. Mem Inst Oswaldo Cruz. 2009;104(8):1117-24.

Fajardo Ramos M, González Obando R, Fidel Suárez M, López D, Wilkerson R, Sallum MAM. Morpholo-gical analysis of three populations of Anopheles (Nys-sorhynchus) nuneztovari Gabaldón (Diptera: Culicidae) from Colombia. Mem Inst Oswaldo Cruz. 2008;103:85-92.

González R, Carrejo N. Introducción al estudio taxo-nómico de Anopheles de Colombia: claves y notas de distribución. 2a ed. Cali: Universidad del Valle; 2009. 260 p.

Conn JE, Puertas YR, Seawright JA. A new cytotype of Anopheles nuneztovari from western Venezuela and Colombia. J Am Mosq Control Assoc. 1993;9:294-301.

Conn JE. A genetic study of the malaria vector Ano-pheles nuneztovari from western Venezuela. J Am Mosq Control Assoc. 1990;6(3):400-5.

Elliott R. The influence of vector behavior on malaria transmission. Am J Trop Med Hyg. 1972;21(5):755-63.

Calado DC, Foster PG, Bergo ES, Santos CLS Dos, Galardo AKR, Sallum MAM. Resurrection of Anophe-les goeldii from synonymy with Anopheles nuneztovari(Diptera, Culicidae) and a new record for Anopheles dunhami in the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2008;103(8):791-9.

Scarpassa VM, Conn JE. Mitochondrial DNA detects a complex evolutionary history with pleistocene epoch divergence for the neotropical malaria vector Ano-pheles nuneztovari sensu lato. Am J Trop Med Hyg. 2011;85(5):857-67.

Naranjo-Diaz N, Rosero DA, Rua-Uribe G, Luckhart S, Correa MM. Abundance, behavior and entomolo-gical inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. Para-sites & Vectors . 2013;6:61.

Naranjo-Díaz N, Altamiranda M, Luckhart S, Conn JE, Correa MM. Malaria vectors in ecologically hete-rogeneous localities of the Colombian Pacific region. PLoS One. 2014;9(8):1-9.

Olano VA, Brochero HL, Sáenz R, Quiñones ML, Mo-lina JA. Mapas preliminares de la distribución de es-pecies de Anophelesvectores de malaria en Colombia. Biomédica. 2001;21:402-8.

Ayala D, Caro-Riaño H, Dujardin JP, Rahola N, Si-mard F, Fontenille D. Chromosomal and environmen-tal determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infect Genet Evol. 2011;11:940-7.

Gómez GF, Márquez EJ, Gutiérrez LA, Conn JE, Co-rrea MM. Geometric morphometric analysis of Colom-bian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Trop. 2014;135:75-85.

Couret J, Dotson E, Benedict MQ. Temperature, lar-val diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One. 2014;9(2).

Damos P, Savopoulou-Soultani M. Temperature-dri-ven models for insect development and vital thermal requirements. Psyche (Stuttg). 2012;123405:1-13.

Louise C, Vidal PO, Suesdek L. Microevolution of Ae-des aegypti. PLoS One. 2015;10(9):e0137851.

Aytekin S, Aytekin AM, Alten B. Effect of different larval rearing temperatures on the productivity (Ro) and morphology of the malaria vector Anopheles su-perpictus Grassi (Diptera: Culicidae) using geometric morphometrics. J Vector Ecol. 2009;34:32-42.

Czarnoleski M, Cooper BS, Kierat J, Angilletta, Jr. MJ. Flies developed small bodies and small cells in warm and in thermally fluctuating environments. J Exp Biol. 2013;216:2896-901.

Petavy G, David JR, Debat V, Gibert P, Moreteau B. Specific effects-of cycling stressful temperatures upon phenotypic and genetic variability of size traits in Dro-sophila melanogaster. Evol Ecol Res. 2004;6(6):873-90.

Aboagye-Antwi F, Tripet F. Effects of larval growth condition and water availability on desiccation resis-tance and its physiological basis in adult Anopheles gambiae sensu stricto. Malar J. 2010;9:225.

Lyons CL, Coetzee M, Chown SL. Stable and fluctua-ting temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasites & Vectors. 2013;6:104.

Mouline K, Manai W, Agnew P, Tchonfienet M, Bren-gues C, Dabire R, et al. Physiology and development of the M and S molecular forms of Anopheles gam-biae in Burkina Faso (West Africa). Med Vet Entomol. 2012;26(4):447-54.

Hidalgo K, Dujardin JP, Mouline K, Dabiré RK, Ren-ault D, Simard F. Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa). Acta Trop. 2015;143:79-88.

Gallesi MM, Mobili S, Cigognini R, Hardersen S, Sa-cchi R. Season matters: differential variation of wing shape between sexes of Calopteryx splendens (Odona-ta: Calopterygidae). Zoomorphology. 2016;1-10.

INS. Boletín Epidemiológico Semanal. Estadísticas del Sistema de Vigilancia en Salud Pública —SIVIGILA, Casos Totales en la Semana Epidemiológica 52 y Acu-mulados del Año. Bogotá: Subdirección de Vigilancia y Control en Salud Pública; 2014.

Conn JE, Vineis JH, Bollback JP, Onyabe DY, Wilker-son RC, Povoa MM. Population structure of the mala-ria vector Anopheles darlingi in a malaria-endemic re-gion of eastern Amazonian Brazil. Am J Trop Med Hyg. 2006;74(5):798-806.

Kamdem C, Tene Fossog B, Simard F, Etouna J, Ndo C, Kengne P, et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PLOS ONE. 2012;7(6).

IDEAM. Instituto de Hidrología, Meteorología y Estu-dios Medioambientales. [Internet]. 2015. [Consultado 2015 Oct 1]. Datos suministrados por el IDEAM, esta-ción meteorológica, N:13015; represa Urrao. Disponi-ble en: http://www.ideam.gov.co

WHO. Malaria entomology and vector control. In: Learner ́s guide. Geneva, Switzerland: World Health Organization; 2000. p. 107.

Rosero DA, Gutiérrez LA, Cienfuegos AV, Jaramillo LM, Correa MM. Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Colomb Entomol. 2010;36:260-3.

Cienfuegos AV, Córdoba L, Gómez GF, Luckhart S, Conn JE, Correa MM. Diseño y evaluación de metodo-logías basadas en PCR-RFLP de ITS2 para la identifica-ción molecular de mosquitos Anopheles spp. (Diptera: Culicidae) de la Costa Pacífica de Colombia. Rev Biomé-dica. 2008;19(1):35-44.

Gómez GF, Bickersmith SA, González R, Conn JE, Co-rrea MM. Molecular taxonomy provides new insights into Anopheles species of the neotropical Arribalzagia Series. PLOS ONE. 2015;10(3):1-17.

Zapata MA, Cienfuegos AV, Quirós OI, Quiñones ML, Luckhart S, Correa MM. Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of ITS sequen-ces. Am J Trop Med Hyg. 2007;77(1):67-72.

Lorenz C, Suesdek L. Short report: Evaluation of che-mical preparation on insect wing shape for geometric morphometrics. Am J Trop Med Hyg. 2013;89(5):928-31.

Dujardin JP. Morphometrics applied to medical ento-mology. Infect Genet Evol. 2008;8:875-90.

Rohlf F, Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol. 1990;39(1):40-59.

Zelditch ML, Swiderski DL, Sheets HD, Fink WL. Geo-metric morphometrics for biologists: a primer. Second edition. San Diego, California: Elsevier Academic Press; 2004. 443 p.

Arnqvist G, Mårtensson T. Measurement error in geo-metric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zool Acad Sci Hungaricae. 1998;44:73-96.

Bookstein FL. Morphometric tools for landmark data: geometry and biology Cambridge University Press. New York: Cambridge University Press; 1991. 456 p.

Klingenberg CP. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev. 1998;73(1):79-123.

Good P. Permutation Tests: A Practical Guide to Re-sampling Methods for Testing Hypotheses. New York: Springer; 1994. 228 p.

Landis JR, Koch GG. The measurement of obser-ver agreement for categorical data. Biometrics. 1977;33:159-74.

Hammer Ø, Harper DAT, Ryan PD. Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9-18.

Huestis DL, Yaro AS, Traore AI, Dieter KL, Nwagba-ra JI, Bowie AC, et al. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiaein the Sahel. J Exp Biol. 2012;215(Pt 12):2013-21

.47. Colinet H, Sinclair BJ, Vernon P, Renault D. Insects in fluctuating thermal environments. Annu Rev Entomol . 2015;60:123-40.

Reiskind MH, Zarrabi AA. Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito, Aedes albopictus. J Insect Physiol. 2012;58(7):911-7.

Orozco-Araque C, Bedoya YA, Gómez GF. Morfo-metría geométrica alar de poblaciones de Anopheles nuneztovari (Diptera: Culicidae) de Colombia [Tesis de grado en Microbiología y Bioanálisis]. Medellín: Univer-sidad de Antioquia; 2014.

Araújo M da S, Gil LHS, de Almeida e Silva A. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capa-city of Anopheles darlingi under laboratory conditions. Malaria J. 2012;11:261.

Brochero H, Pareja PX, Ortiz G, Olano VA. Breeding places and biting activity of Anopheles species in the municipality of Cimitarra, Santander, Colombia. Bio-médica. 2006;26:269-77.

Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, et al. Influence of larval density or food variation on the geo-metry of the wing of Aedes (Stegomyia) aegypti. Trop Med Int Heal. 2007;12(11):1354-60.

Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, et al. Larval nutrition differentially affects adult fitness and Plasmodium de-velopment in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit Vectors. 2013;6:345.

Bitner-Mathé BC, Klaczko LB. Size and shape heri-tability in natural populations of Drosophila medio-punctata: Temporal and microgeographical variation. Genetica. 1999;105(1):35-42.

Jirakanjanakit N, Leemingsawat S, Dujardin JP. The geometry of the wing of Aedes (Stegomyia) aegypti in isofemale lines through successive generations. Infect Genet Evol. 2008;8(4):414-21.

Sanford MR, Demirci B, Marsden CD, Lee Y, Cornel AJ, Lanzaro GC. Morphological differentiation may mediate mate-choice between incipient species of Anopheles gambiae s.s. PLoS One. 2011;6.

Debat V, Cornette R, Korol A, Nevo E, Soulet D, Da-vid J. Multidimensional analysis of Drosophila wing variation in Evolution Canyon. J Genet. 2008;87(4):407-19.

Gilchrist AS, Azevedo RBR, Partridge L, O’Higgins P. Adaptation and constraint in the evolution of Droso-phila melanogaster wing shape. Evol Dev. 2000;2:114-24.

Bos FM, Lentink D, Oudheusden BW Van, Bijl H. In-fluence of wing kinematics on performance in hove-ring insect flight. J Biomech. 2006;39:S358.

Angêlla AF, Salgueiro P, Gil LHS, Vicente JL, Pinto J, Ribolla PEM. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi. Malaria J. 2014;13:203.

Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria trans-mission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107(34):15135-9.

Published

2019-07-13

How to Cite

Orozco Araque, C., Correa Ochoa, M. M., & Gómez, G. F. (2019). Wing form differences of a Colombian population of Anopheles(Nyssorhynchus) nuneztovari Gabaldón, 1940 between the dry and rainy seasons. Hechos Microbiológicos, 9(1-2), 33–42. https://doi.org/10.17533/udea.hm.333640

Issue

Section

Artículos de investigación original

Most read articles by the same author(s)