Estimation of biological reference intervals of the hemogram in children and young people aged 2 to 18 years using empirical percentile, bootstrap, Harrell & Davis, and Horn’s robust methods
DOI:
https://doi.org/10.17533/udea.hm.335054Keywords:
Bootstrap, Harrell & Davis, Horn’s robust method, empirical percentile, hemogram, biological reference intervals, BRIAbstract
Introduction: Clinical laboratory results should be interpreted according to biological intervals obtained from reference individuals. Intra- and inter-variability of biological magnitudes and of other factors such as nutrition and geographical origin, play an important role. These values are usually calculated with statisti-cal tools that are not tested for statistical assumptions, or without considering the required sample size for validity.
Methods: Percentile, bootstrap, Harrell & Davis’, and Horn’s robust methods were used in this study to estimate biological reference intervals of 20 parame-ters of the hemogram from 842 young people aged between 2 and 18 years. The classification of pediatric populations by age and sex recommended by Soldin et al. (2003) was considered. Also, the intervals proposed by such authors were compared with those contained in this study for leukocytes, red blood cells, hemoglo-bin, and platelets in order to determine if there were substantial changes in the populations studied, and to establish which of the methods evaluated would provide an interval for the clinician to determine the hematological status of the population studied.
Results and conclusions: In most cases, bootstrap and Horn’s robust methods provided wider intervals than those obtained with empirical percentile and Harrell & Davis’ methods. The lower limit calculated with the robust estimator was far below the median value, and the bootstrap method produced the higher upper limit. Marked differences were observed af-ter comparing each interval with those proposed by Soldin et al., even when intra-individual variability was low, as in the case of hemoglobin. These results confirmed the need for each laboratory to estimate its own biological intervals using standardized protocols
Downloads
References
Standardization of Medical Laboratories. Requirements for Quality and Competence. Ginebra: ISO; 2012.
Clinical and Laboratory Standards Institute. Defining Establishing and Verifying Reference Intervals in the Clinical Laboratory. Aproved. Guideline. 3a ed. CLSI document EP28-A3c. Wayne, PA: Clinical and Laboratory Standards institute; 2010
Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854-868. doi:10.1373/clinchem.2011.177741
Jaeger BA, Tauer JT, Ulmer A, Kuhlisch E, Roth HJ, & Suttorp M. Changes in bone metabolic parameters in children with chronic myeloid leukemia on imatinib treatment. Med Sci Monit. 2012;18(12):CR721-728.
Kelishadi R, Marateb HR, Mansourian M, Ardalan G, Heshmat R, Adeli K. Pediatric-specific reference intervals in a nationally representative sample of Iranian children and adolescents: the CASPIAN-III
study. World J Pediatr. 2016;12(3):335-342. doi:10.1007/s12519-015-0065-8.
Wyness SP, Roberts WL, Straseski JA. Pediatric reference intervals for four serum bone markers using two automated immunoassays. Clin Chim Acta. 2012;415:169-172. doi:10.1016/j.cca.2012.10.036
Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher DE, Lux S. Nathan and Oski’s Hematology of Infancy and Childhood .Philadelphia: Elsevier Health Sciences; 2008
Hoffmann RG, Waid ME. The “Average of Normals” Method of Quality Control. Am J Clin Pathol.1965;43:134-141.
Horn PS, Pesce AJ. Reference intervals: an update. Clin Chim Acta.2003;334[(1-2):5-23.
Guzmán PA. Evaluación del Bootstrap para la estimación de percentiles extremos. Aplicación en intervalos de referencia. Bogotá: Universidad Nacional de Colombia; 2011.
Ledesma R. Introducción al Bootstrap. Desarrollo de un ejemplo acompañado de un software de aplicación. Tutorials in Quantitative Methods for Psychology. 2008;4(2):51-60.
Dixon W. Processing data for outliers. Biometrics. 1953; 9:74-89.
Soldin SJ, Brugnara C, Wong EC. Pediatric Reference Ranges. Washington: AACC Press; 2003.
Bull BS, Fujimoto K, Houwen B, Klee G, van Hove L, van Assendelft OW, et al. International Council for Standardization in Haematology [ICSH] recommendations for “surrogate reference” method for the packed cell volume. Lab Hematol. 2003;9(1):1-9.
Ricós C, Ramón F, Salas A, Buño A, Calafell R, Morancho J, et al. Minimum analytical quality specifications of inter-laboratory comparisons: agreement among Spanish EQAP organizers. Clin Chem Lab Med. 2011;50(3):455-461. doi:10.1515/CCLM.2011.787
Miale TD & Bloom GE. The significance of lymphocytosis in congenital hypoplastic anemia. J Pediatr. 1975;87(4):550-553.
Vázquez-García JC, Pérez-Padilla R, Casas A, Schönffeldt-Guerrero P, Pereira, J, Vargas-Domínguez C, et al. Reference Values for the Diffusing Capacity Determined by the Single-Breath Technique at Different Altitudes: the Latin American Single-Breath Diffusing Capacity Reference Project. Respir Care. 2016;61(9):1217-1223. doi:10.4187/respcare.04590
Reed AH, Henry RJ, Mason WB. Influence of statistical method used on the resulting estimate of normal range. Clin Chem. 1971;17(4):275-284.
Linnet K. Comparison of quantitative diagnostic tests: type I error, power and sample size. Stat Med. 1987;6(2):147-158.
Horn PS, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem.1988;44(3):622-631.
Linnet K. Nonparametric estimation of reference intervals by simple and bootstrap-based procedures. Clin Chem. 2000;46(6 Pt 1):867-869.
Linnet K. Estimation of the limit of detection with a bootstrap-derived standard error by a partly non-parametric approach. Application to HPLC drug assays. Clin Chem Lab Med. 2005;43(4):394-399. doi:10.1515/CCLM.2005.071
Harrell FE, Davis CE. A new distribution-free quantile estimator. Biometrika. 1982;69(3):635-640. doi:10.1093/biomet/69.3.635
Bock BJ, Dolan CT, Miller GC, Fitter WF, Harsell BD, Crowson N, et al. The data warehouse as a foundation for population-based reference intervals. Am J Clin Pathol. 2003;120:662-70.
Shine B. Use of routine clinical laboratory data to define reference intervals. Ann Clin Biochem. 2008;45:467-75.
Abou El Hassan M, Stoianov A, Araújo PA, Sadeghieh T, Chan MK, Chen Y, et al. CLSI-based transference of CALIPER pediatric reference intervals to Beckman Coulter AU biochemical assays. Clin Biochem. 2015;48(16-17):1151-1159. doi:10.1016/j.clinbiochem.2015.05.002
Araújo PA, Thomas D, Sadeghieh T, Bevilacqua V, Chan MK, Chen, Y. Adeli K, et al. CLSI-based transference of the CALIPER database of pediatric reference intervals to Beckman Coulter DxC biochemical assays. Clin Biochem. 2015;48(13-14):870-880. doi:10.1016/j.clinbiochem.2015.06.002
Higgins V, Chan MK, Nieuwesteeg M, Hoffman BR, Bromberg IL, Gornall D, et al. Transference of CALIPER pediatric reference intervals to biochemical assays on the Roche cobas 6000 and the Roche Modular P. Clin Biochem. 2016;49(1-2):139-149. doi:10.1016/j.clinbiochem.2015.08.018
Jung B, Adeli K. Clinical laboratory reference intervals in pediatrics: the CALIPER initiative. Clin Biochem. 2009;42(16-17):1589-1595. oi:10.1016/j.clinbiochem.2009.06.025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Hechos Microbiológicos

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.