Role of mycorrhiza-forming fungi in the bioremediation of agricultural soils contaminated with heavy metals: a systematic review
DOI:
https://doi.org/10.17533/udea.hm.339130Keywords:
mycorrhizae, biodegradation, environmental health, phytoremediationAbstract
Introduction: the objective this research was to describe the role of mycorrhizal fungi in bioremediation processes ofsoils contaminated with heavy metals through a systematic review of the scientific literature.
Methods: a systematic review of the scientific literature published between 2003 and 2014 was conducted in thedatabases ScienceDirect, Springer Link and EBSCO. This search produced a total of 39 original articles, filtered byinclusion and exclusion criteria. Complementary literature obtained by the search tool Google Academic was also included.
Results and Conclusion: the study revealed that endomycorrhyzae and ectomycorrhizae are the mycorrhizal typesmost frequently described in soils contaminated by heavy metals and that they have mechanisms of tolerance to stressgenerated by these elements which include adsorption and absorption of heavy metals, promotion of plant growth,alteration of the biochemical and physiological properties of the plant and production of metabolites.
Downloads
References
Miransari M. Hyperaccumulators arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances. 2011;29:645–653. doi: 10.1016/j.biotechadv.2011.04.006
Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard F, Lavelle P. Influence of heavy metals on C and N mineralization and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils. Applied Soil Ecology. 2004:25:99–109. doi: 10.1016/j.apsoil.2003.09.003
Huang H, Zhang S, Shan X, Chen B, Zhu C, Bell N. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environmental Pollution. 2007;146:452-457. doi: 10.1016/j.envpol.2006.07.001
Vera G, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 2006;223: 1115-1122. doi: 10.1007/s00425-006-0225-0
Rueda G, Rodríguez J, Madriñán R. Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. Acta Agronómica. 2011;60(3):203-216.
Guala S, Vega F, & Covelo E. The dynamics of heavy metals in plant–soil interactions. Ecological Modelling. 2010;221:1148–1152. doi:10.1016/j.ecolmodel.2010.01.003
Xiaoquing D, Chaolin L, Jianxing W, Suting l, Bin Y. A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption. Journal of Hazardous Materials. 2010;175;1022-1030. doi:10.1016/j.jhazmat.2009.10.112
Kamaludeen, SP, Ramasamy K. Rhizoremediation of metals: harnessing microbial communities. Indian Journal of Microbiology. 2008;48(1):80-88. doi: 10.1007/s12088-008-0008-3
Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P. Symbiotic role of Glomus mosseae in phytoextration of lead in vetiver grass. Journal of Hazardous Materials. 2010;177:465-474. doi:10.1016/j.jhazmat.2009.12.056
Sharda K, Alok A. Arbuscular Mycorrhizal Association in Plants Growing on metal-Contaminated and Non contaminated soils Adjoining Kanpur Tanneries, Uttar Pradesh, India. Water, Air, and Soil Pollution. 2009;202:45-56. doi: 10.1007/s11270-008-9957-8
Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis [PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses]. Medicina Clinica. 2010;135:507–511. doi: 10.1016/j.medcli.2010.01.015
Zhiyuan L, Zongwei M, Tsering J, Van K, Zengwei Y, Lei H. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment. 2014;468–469, 843–853. Doi: 10.1016/j.scitotenv.2013.08.090
Gaur A, Adholeya A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils Current Science. 2004; 86:528-534.
Hildebrandt U, Regvar M, Bothe, H. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry. 2007;68:139–146. doi:10.1016/j.phytochem.2006.09.023
Requena N, Serrano E, Ocón A, Breuninger M. Plants signals and fungal perception during arbuscular mycorrhizae establishment. Phytochemestry. 2007;68:33-40. doi:10.1016/j.phytochem.2006.09.036
Meier S, Azcón R, Cartes P, Borie F, Cornejo P. Alleviation of Cu toxicity in Oenotherapicensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Applied Soil Ecology. 2011;48:117–124. doi:10.1016/j.apsoil.2011.04.005
Bona, E, Marsano, F, Massa, N, Cattaneo, C, Cesaro P, & Argese, E. Proteomic analysis as a tool for investigating arsenic stress in Pterisvittata roots colonized or not by arbuscular mycorrhizal simbiosis. Journal of Proteomics. 2011;74:1338–1350. doi:10.1016/j.jprot.2011.03.027
Nichols K. Characterization of Glomalind A Glycoprotein Produced by Arbuscular Mycorrhizal Fungi (Doctoral dissertation, University of Maryland). 2003.
González M, Carrillo R, Gutierrez MC. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials. 2009;161:1288–1298. doi: 10.1016/j.jhazmat.2008.04.110
Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany. 2004;82:1016–1045. doi: 10.1139/b04-060
Chen BD, Zhu YG, Duana J, Xiao XY, Smith SE. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution. 2007;147: 374–380. doi: 10.1016/j.envpol.2006.04.027
Ortega MP, Xoconostle B, Maldonado E, Carrillo R Hernández J, Garduño M, et al. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environmental Pollution. 2010;158:1922–1931. doi: 10.1016/j.envpol.2009.10.034
González MC, Carrillo R, Wright SF, Nichols KA. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution. 2004;130:317-323. doi: 10.1016/j.envpol.2004.01.004
Arriagada C, Herrera MA, Ocampo JA. Contribution of arbuscular mycorrhizal and saproben Fungi to the tolerance of Eucalyptus globulus to Pb. Water. Water, Air, and Soil Pollution. 2005;166:31–47. Doi: 10.1007/s11270-005-7711-z
Arriagada C, Aranda E, Sampedro I, García I, Ocampo JA. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globules. Chemosphere. 2009;77:273–278. doi: 10.1016/j.chemosphere.2009.07.042
Chen B, Zhu YG, Zhang X, Jakobsen I. The Influence of Mycorrhiza on Uranium and Phosphorus Uptake by Barley Plants from a Field-contaminated Soil. Environmental Science and Pollution Research. 2005;12:325-331. doi: 10.1065/espr2005.06.267
Wang F, Lin X, Yin R. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil. 2005;269:225-232. doi: 10.1007/s11104-004-0517-8
Chen BD, Zhu YG, Smith FA. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pterisvittata L.) from a uranium mining-impacted soil. Chemosphere. 2006;62:1464–1473. doi: 10.1016/j.chemosphere.2005.06.008
Yan L, Jin P, Ping S, Bin Z. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Chemosphere. 2009;75:894–899. doi:10.1016/j.chemosphere.2009.01.046
Leung HM, Leung AOW, Ye ZH, Cheung KC, Yung KKL.Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pterisvittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere. 2013;92:1367–1374. doi: 10.1016/j.chemosphere.2013.04.093
Orlowska E, Godzik B, Turnau K. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environmental Pollution. 2012;168:121–130. doi:10.1016/j.envpol.2012.04.026
Bissonnette L, Arnaud M, Labrecque M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil. 2010;332:55–67. doi: 10.1007/s11104-009-0273-x
Janoušková M, Pavlíková D. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant and Soil, 2010; 332:511-520. doi: 10.1007/s11104-010-0317-2
López SA, Parada SA, Renato AJ, Ferreira AM. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremediation. 2008;10(1):1–13. doi: 10.1080/15226510701827002
Ching CW, Sheng CW, Clem K, Abdul GK, Ming HW. The Role of Mycorrhizae Associated with Vetiver Grown in Pb-/Zn-Contaminated Soils: Greenhouse Study. Restoration Ecology. 2007;15(1):60–67. doi: 10.1111/j.1526-100X.2006.00190.x
Audet P, Charest C. Contribution of arbuscular mycorrhizal simbiosis to in vitro root metal uptake: from trace to toxic metal conditions. Botany. 2009;87, 913–921. doi: 10.1139/B09-062
Hassan SE, Hijri M, Arnaud M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnology. 2013;30:780–787. doi: 10.1016/j.nbt.2013.07.002
Elahi FE, Mridha MA, Aminuzzaman FM. Influence of Amf Inoculation on Growth, Nutrient Uptake, Arsenic Toxicity and Chlorophyll Content of Eggplant Grown in Arsenic Amended Soil. Advances in natural and applied Science. 2010;4,184-192.
Xu ZM, Tang H, Chen YH, Ban H, Zhang. Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Science of The Total Environment. 2012. 435:436, 453–464. doi: 10.1016/j.scitotenv.2012.07.029
Wang F, Lin X, Yin R, Long W. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology. 2006;31:110–119. doi: 10.1016/j.apsoil.2005.03.002
Chen B, Roos P, Zhu YG, Jakobsen I. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. Journal of Environmental Radioactivity. 2008;99,801-810. doi:10.1016/j.jenvrad.2007.10.007
Wei Y, Hou H, Li J, ShangGuan Y, Xu Y, Zhang J, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with an Mn hyperaccumulator Phytolacca Americana, in mining area. Applied Soil Ecology. 2014;82:11-17. doi:10.1016/j.apsoil.2014.05.005
Zhang X, Bai-Hui R, Song-Lin W, Yu-Qing S, Ge L, Bao-Dong C. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic contaminated soil. Chemosphere. 2014;119:224-230. doi:10.1016/j.chemosphere.2014.06.042
Vivas A, Biró B, Németh T, Barea JM, Azcón R. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biology and Biochemistry. 2006;8:2694–2704. doi: 10.1016/j.soilbio.2006.04.020
Yu L, Peter,C, Junling Z, Xiaolin L. Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environmental and Experimental Botany. 2009;66:435-441. doi:10.1016/j.envexpbot.2009.03.002
Yu L, Zhu YG, Chen BD, Li XL. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pterisvittata L. Mycorrhiza. 2005;15:187-192. doi: 10.1007/s00572-004-0320-7
Vivas A, Barea JM, Azcón R. Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environmental Pollution. 2005;134:257–266. doi: 10.1016/j.envpol.2004.07.029
Gar N, Singla P. The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated Scientia Horticulturae. 2005;143: 92–101. doi: 10.1016/j.scienta.2012.06.010
Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, et al. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere. 2005;59:21–29. doi:10.1016/j.chemosphere.2004.10.009
Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M. Proteomic analysis of Pterisvittata fronds: two arbuscularmycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics. 2010;10:3811–34. doi: 10.1002/pmic.200900436
Chang CL, Tao L, Yan PX, Mao JL, Han BZ, Zhi WZ. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytoremediation. 2009;11:692–703. doi: 10.1080/15226510902787310.
Medina A, Vassileva M, Barea JM, Azcón R. The growth enhancement of clover by Aspergillus-treated sugar beet waste and Glomus mosseae inoculationin Zn contaminated soil. Applied Soil Ecolgy. 2006;33:87–98. doi:10.1016/j.apsoil.2005.08.003
Krpata D, Peintner U, Langer I, Fitz W, Schweiger P. Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycological Research. 2008;112:1069–1079. doi:10.1016/j.mycres.2008.02.004
Fomina MA, Alexander IJ, Colpaert JV, Gadd GM. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry.2005;37:851–866. doi: 10.1016/j.soilbio.2004.10.013
Colpaert JV, Adriansen K, Muller LAH, Lambaerts M, Faes C, Carleer R, Vangronsveld J. Element profiles and growth in Zn-sensitive and Zn-resistant suilloid fungi. Mycorrhiza; 2005;15:628-634. doi: 10.1007/s00572-005-0009-6
Crane S, Dighton J, Barkay T. Growth responses to and accumulation of mercury by ectomycorrhizal fungi; Fungal Biology. 2010;114:873-880. doi:10.1016/j.funbio.2010.08.004
Sousa NR, Ramos M, Marques A, Castro P. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Science of The Total Environment. 2012;414;63–67. doi:10.1016/j.scitotenv.2011.10.053
Johansson E, Fransson P, Finlay R, Van P. Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biology and Biochemistry. 2008;40:2225–2236. doi:10.1016/j.soilbio.2008.04.016
Shivakumar CK, Hemavani C, Thippeswamy B, Krishnappa M. Effect of Inoculation with Arbuscular Mycorrhizal Fungi on Green Gram Grown in Soil Containing Heavy Metal Zinc. Journal of Experimental Sciences. 2011;2:17-21. Retrieved from http://jexpsciences.com/index.php/jexp/article/viewArticle/9461
Hua JF, Lin XG, Bai JF, Shao YF, Yin R, Jiang Q. Effects of Arbuscular Mycorrhizal Fungi and Earthworm on Nematode Communities and Arsenic Uptake by Maize in Arsenic-Contaminated Soils. Pedosphere. 2010;20: 163–173. doi:10.1016/S1002-0160(10)60004-5
Chern ECW, Tsai AI, Gunseitan OA. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environmental Science & Technology. 2007;41:3566–3572. Doi:10.1021/es0628598
Shaibur MR, Kitajima N, Sugewara R, Kondo T, Alam S, Imamul H, et al. Critical toxicity of arsenic and elemental composition of arsenic induced chlorosis in hydroponic sorghum. Water Air Soil Pollut. 2008;191:279–292. doi: 10.1007/s11270-008-9624-0
Páez D, Tamames J, Lorenzo VD, Canovas D. Microbial responses to environmental arsenic. Biometals. 2009;22(1):117–130. doi: 10.1007/s10534-008-9195-y
Vázquez M, Azcón R, Barea JM. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology. 2000;15:261–272. doi:10.1016/S0929-1393(00)00075-5
Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T. Organization and metabolism of plastids and mitochondria inn arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiology. 2005;139(1);329–40. doi: 10.1104/pp.105.061457
Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytologyst. 2006;171:41–53. doi: 10.1111/j.1469-8137.2006.01750.x
Vodnik D, Grčmana H, Mačeka I, Van Elterenb JT, Kovačevič M. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of The Total Environment. 2008;392(1):130–136. doi:10.1016/j.scitotenv.2007.11.016
Hirata K, Tsuii N, Mivamoto K. Biosynthetic Regulation of Phytochelatins, Heavy Metal-Binding Peptides. Journal of Bioscience and Bioengineering. 2005 100:593-599. doi:10.1263/jbb.100.593
Kneer R, Zenk MH. Phytochelatins protect plant enzymes from heavy metalpoisoning. Phytochemistry. 1192;31:2663–26
doi:10.1016/0031-9422(92)83607-Z70. Pallara G, Todeschini V, Lingua G, Camussi A, Racchi ML. Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil. Plant Physiology and Biochemistry. 2013;63:131-139. doi:10.1016/j.plaphy.2012.11.016
Zhang Z, Gao X, Qiu B. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry. 2007;69:911-918. doi:10.1016/j.phytochem.2007.10.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Hechos Microbiológicos
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.