Biogenic amines found in meat, fish and meat products

Formation and health effects

Authors

DOI:

https://doi.org/10.17533/udea.hm.v14n1a04

Keywords:

biogenic amines, meat, fish, fermented meats, bioactive compounds, starter cultures

Abstract

Introduction: Biogenic amines (BA) are nitrogenous compounds that can form in meat, fish, and fermented meat products due to the enzymatic decarboxylation caused by microorganisms like lactic acid bacteria, Enterobacteriaceae, Enterococci, Staphylococcus spp, Pseudomonas, among others. High concentrations of BA indicate food deterioration and are associated with adverse health effects. Therefore, there is a need to develop rapid, affordable, and simple detection methods to establish the maximum allowable amounts of each BA. Additionally, strategies for inhibiting and reducing its formation are necessary. Objective:
The objective is to present updated information about the content of BA in meat, fish, and fermented meat products, identify the main microorganisms involved in their formation, explore the effects of consumption on health, review current detection methods, and evaluate the current strategies for preventing their formation. Methodology: A bibliographic search on various databases including ScienceDirect, Scielo, PubMed, SpringerLink, and Clinicalkey was conducted. Articles published in Spanish and English between 2018-2023 were selected for analysis. Results: Excessive consumption of BA has harmful health effects including poisoning, hypertensive crises, in vitro cytotoxicity, and carcinogenic compounds formation. However, regulations on the maximum allowable concentrations of BA in food are limited. Therefore, it is necessary to develop fast, sensitive, affordable, and economical detection methods, such as enzymatic biosIntroduction: Biogenic amines (BA) are nitrogenous compounds that can form in meat, fish, and fermented meat products due to the enzymatic decarboxylation caused by microorganisms like lactic acid bacteria, Enterobacteriaceae, Enterococci, Staphylococcus spp, Pseudomonas, among others. High concentrations of BA indicate food deterioration and are associated with adverse health effects. Therefore, there is a need to develop rapid, affordable, and simple detection methods to establish the maximum allowable amounts of each BA. Additionally, strategies for inhibiting and reducing its formation are necessary. Objective: The objective is to present updated information about the content of BA in meat, fish, and fermented meat products, identify the main microorganisms involved in their formation, explore the effects of consumption on health, review current detection methods, and evaluate the current strategies for preventing their formation. Methodology: A bibliographic search on various databases including ScienceDirect, Scielo, PubMed, SpringerLink, and Clinicalkey was conducted. Articles published in Spanish and English between 2018-2023 were selected for analysis. Results: Excessive consumption of BA has harmful health effects including poisoning, hypertensive crises, in vitro cytotoxicity, and carcinogenic compounds formation. However, regulations on the maximum allowable concentrations of BA in food are limited. Therefore, it is necessary to develop fast, sensitive, affordable, and economical detection methods, such as enzymatic biosensors and nanoenzymes. Furthermore, strategies to reduce BA formation are promising, with the use of certain bioactive compounds and starter cultures showing positive resultsensors and nanoenzymes. Furthermore, strategies to reduce BA formation are promising, with the use of certain bioactive compounds and starter cultures showing positive results.

|Abstract
= 915 veces | PDF (ESPAÑOL (ESPAÑA))
= 568 veces|

Downloads

Download data is not yet available.

References

1. Wójcik W, Łukasiewicz-Mierzejewska M, Damaziak K, Bień D. Biogenic Amines in Poultry Meat and Poultry Products: Formation, Appearance, and Methods of Reduction. Animals. 2022;12(12):1577. doi: 10.3390/ani12121577

2. Fong FLY, El-Nezami H, Sze ETP. Biogenic amines – Precursors of carcinogens in traditional Chinese fermented food. NFS Journal. 2021; 23:52-57. doi: 10.1016/j.nfs.2021.04.002

3. Dabadé DS, Jacxsens L, Miclotte L, Abatih E, Devlieghere F, De Meulenaer B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control. 2021; 120:107497. doi: 10.1016/j.foodcont.2020.107497

4. Zhang Y jia, Zhang Y, Zhou Y, Li G hui, Yang W zhen, Feng X song. A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010. J Chromatogr A. 2019;1605(360361):360361. doi: 10.1016/j.chroma.2019.07.015

5. Wójcik W, Łukasiewicz M, Puppel K. Biogenic amines: formation, action and toxicity – a review. J Sci Food Agric. 2021;101(7):2634-2640. doi: 10.1002/jsfa.10928

6. Omer AK, Mohammed RR, Ameen PSM, Abas ZA, Ekici K. Presence of Biogenic Amines in Food and Their Public Health Implications: A Review. J Food Prot. 2021;84(9):1539-1548. doi: 10.4315/JFP-21-047

7. Jaguey-Hernández Y, Aguilar-Arteaga K, Ojeda-Ramirez D, Añorve-Morga J, González-Olivares LG, Castañeda-Ovando A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Research International. 2021;144(110341):110341. doi: 10.1016/j.foodres.2021.110341

8. Gao X, Li C, He R, et al. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem. 2023;405(134911):134911. doi: 10.1016/j.foodchem.2022.134911

9. Kim HS, Lee SY, Hur SJ. Effects of different starter cultures on the biogenic amine concentrations, mutagenicity, oxidative stress, and neuroprotective activity of fermented sausages and their relationships. J Funct Foods. 2019; 52:424-429. doi: 10.1016/j.jff.2018.11.033

10. Gama MR, Rocha FRP. Solventless separation of underivatized biogenic amines by sequential injection chromatography. Microchemical Journal. 2020;156(104839):104839. doi: 10.1016/j.microc.2020.104839

11. del Rio B, Redruello B, Linares DM, et al. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci Rep. 2019;9(1):120. doi:10.1038/s41598-018-36239-w

12. del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. The biogenic amine tryptamine, unlike β-phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chem. 2020; 331:127303. doi: 10.1016/j.foodchem.2020.127303

13. Kang CR, Kim YY, Lee JI, Joo HD, Jung SW, Cho SI. An Outbreak of Scombroid Fish Poisoning Associated with Consumption of Yellowtail Fish in Seoul, Korea. J Korean Med Sci. 2018;33(38). doi:10.3346/jkms.2018.33.e235

14. Velut G, Delon F, Mérigaud JP, et al. Histamine food poisoning: a sudden, large outbreak linked to fresh yellowfin tuna from Reunion Island, France, April 2017. Eurosurveillance. 2019;24(22). doi:10.2807/1560-7917.ES.2019.24.22.1800405

15. E.F.S.A. The European Union One Health 2018 Zoonoses Report. EFSA Journal. 2019;17(12). doi: 10.2903/j.efsa.2019.5926

16. Codex Alimentarius. Programa conjunto de la FAO/OMS sobre normas alimentarias comité del Codex sobre pescado y productos pesqueros. In: Debate referente a la histamina. [Internet. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-722-34%252FWD%252Ffp34_10s.pdf

17. Autoridad Europea de Seguridad Alimentaria (EFSA). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal. 2011;9(10):2393. doi: 10.2903/j.efsa.2011.2393

18. Ministerio de Salud y Protección Social. Resolución 2674 de 2013. Establece Los Requisitos Sanitarios Que Deben Cumplir Las Personas Naturales o Jurídicas Que Ejercen Actividades de Fabricación, Procesamiento, Preparación, Envase, Almacenamiento, Transporte, Distribiución y Comercialización de Alimentos y Materias Primas de Alimentos y Los Requisitos Para La Notificación, Permiso o Registro Sanitario de Los Alimentos y Materias Primas de Alimentos y Los Requisitos Para La Notificación, Permiso o Registro Sanitario, Según El Riesgo de Salud Pública. Accessed August 3, 2023. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-2674-de-2013.pdf

19. Ministerio de Salud y Protección Social (Colombia) Decreto 1500 de 2007. Establece el reglamento técnico a través del cual se crea el Sistema Oficial de Inspección, Vigilancia y Control de la carne, productos cárnicos y derivados cárnicos destinados para el consumo humano y los requisitos sanitarios y de inocuidad que se deben cumplir en su producción primaria, beneficio, desposte, desprese, procesamiento, almacenamiento, transporte, comercialización, expendio, importación o exportación. https://corponarino.gov.co/expedientes/juridica/2007decreto1500.pdf

20. Ministerio de Salud y Protección Social (Colombia). Resolución 122 de 2012. Reglamento técnico sobre los requisitos fisicoquímicos y microbiológicos que deben cumplir los productos de la pesca, en particular pescados, moluscos y crustáceos para consumo humano. https://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Resolucion/30033961

21. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Capítulo 29: Carne, pescado, huevos, leche y productos derivados [Internet. https://www.fao.org/3/w0073s/w0073s0x.htm

22. Triki M, Herrero A, Jiménez-Colmenero F, Ruiz-Capillas C. Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods. 2018;7(9):132. doi: 10.3390/foods7090132

23. Liu Y, He Y, Li H, et al. Biogenic amines detection in meat and meat products: the mechanisms, applications, and future trends. Journal of Future Foods. 2024;4(1):21-36. doi: 10.1016/j.jfutfo.2023.05.002

24. Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends in Analytical Chemistry. 2018;98:128-142. doi: 10.1016/j.trac.2017.11.001

25. Francisco KCA, Brandão PF, Ramos RM, Gonçalves LM, Cardoso AA, Rodrigues JA. Salting‐out assisted liquid–liquid extraction with dansyl chloride for the determination of biogenic amines in food. Int J Food Sci Technol. 2020;55(1):248-258. doi: 10.1111/ijfs.14300

26. Wu H, Li G, Liu S, et al. Simultaneous Determination of Seven Biogenic Amines in Foodstuff Samples Using One-Step Fluorescence Labeling and Dispersive Liquid–Liquid Microextraction Followed by HPLC-FLD and Method Optimization Using Response Surface Methodology. Food Anal Methods. 2015;8(3):685-695. doi: 10.1007/s12161-014-9943-2

27. Li G, Dong L, Wang A, Wang W, Hu N, You J. Simultaneous determination of biogenic amines and estrogens in foodstuff by an improved HPLC method combining with fluorescence labeling. LWT - Food Science and Technology. 2014;55(1):355-361. doi: 10.1016/j.lwt.2013.06.028

28. Saaid M, Saad B, Hashim NH, Mohamed Ali AS, Saleh MI. Determination of biogenic amines in selected Malaysian food. Food Chem. 2009;113(4):1356-1362. doi: 10.1016/j.foodchem.2008.08.070

29. Huang J, Gan N, Lv F, Cao Y, Ou C, Tang H. Environmentally friendly solid-phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples. J Sep Sci. 2016;39(22):4384-4390. doi: 10.1002/jssc.201600893

30. Fu Q, Zheng H, Han X, Cao L, Sui J. Development of a highly sensitive HPLC method for the simultaneous determination of eight biogenic amines in aquatic products. Acta Chromatogr. 2021;33(4):378-386. doi: 10.1556/1326.2020.00824

31. Chang Q, Zang X, Wu T, et al. Use of Functionalized Covalent Organic Framework as Sorbent for the Solid-Phase Extraction of Biogenic Amines from Meat Samples Followed by High-Performance Liquid Chromatography. Food Anal Methods. 2019;12(1):1-11. doi:10.1007/s12161-018-1324-9

32. Vasconcelos H, de Almeida JMMM, Matias A, Saraiva C, Jorge PAS, Coelho LCC. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci Technol. 2021; 113:86-96. doi: 10.1016/j.tifs.2021.04.043

33. Ishimaru M, Muto Y, Nakayama A, Hatate H, Tanaka R. Determination of Biogenic Amines in Fish Meat and Fermented Foods Using Column-Switching High-Performance Liquid Chromatography with Fluorescence Detection. Food Anal Methods. 2019;12(1):166-175. doi: 10.1007/s12161-018-1349-0

34. Jastrzȩbska A, Piasta A, Szłyk E. Application of ion chromatography for the determination of biogenic amines in food samples. Journal of Analytical Chemistry. 2015;70(9):1131-1138. doi: 10.1134/S1061934815070035

35. Tan A, Zhao Y, Sivashanmugan K, Squire K, Wang AX. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis. Food Control. 2019; 103:111-118. doi: 10.1016/j.foodcont.2019.03.032

36. Ruiz-Jiménez J, Luque de Castro MD. Pervaporation as interface between solid samples and capillary electrophoresis. J Chromatogr A. 2006;1110(1-2):245-253. doi: 10.1016/j.chroma.2006.01.081

37. Jin YJ, Kwak G. Detection of biogenic amines using a nitrated conjugated polymer. Sens Actuators B Chem. 2018; 271:183-188. doi: 10.1016/j.snb.2018.05.091

38. Lv R, Huang X, Dai C, Ye W, Tian X. A rapid colorimetric sensing unit for histamine content of mackerel using azo reagent. J Food Process Eng. 2019;42(5). doi: 10.1111/jfpe.13099

39. Capoferri D, Álvarez-Diduk R, Del Carlo M, Compagnone D, Merkoçi A. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Anal Chem. 2018;90(9):5850-5856. doi: 10.1021/acs.analchem.8b00389

40. Ahangari H, Kurbanoglu S, Ehsani A, Uslu B. Latest trends for biogenic amines detection in foods: Enzymatic biosensors and nanozymes applications. Trends Food Sci Technol. 2021; 112:75-87. doi: 10.1016/j.tifs.2021.03.037

41. Heerthana VR, Preetha R. Biosensors: a potential tool for quality assurance and food safety pertaining to biogenic amines/volatile amines formation in aquaculture systems/products. Rev Aquac. 2019;11(1):220-233. doi: 10.1111/raq.12236

42. Qin Y, Ke W, Faheem A, Ye Y, Hu Y. A rapid and naked-eye on-site monitoring of biogenic amines in foods spoilage. Food Chem. 2023; 404:134581. doi: 10.1016/j.foodchem.2022.134581

43. Kashyap S, Tehri N, Verma N, Gahlaut A, Hooda V. Recent advances in development of electrochemical biosensors for the detection of biogenic amines. 3 Biotech. 2023;13(1):2. doi: 10.1007/s13205-022-03414-w

44. Torre R, Costa-Rama E, Lopes P, Nouws HPA, Delerue-Matos C. Amperometric enzyme sensor for the rapid determination of histamine. Analytical Methods. 2019;11(9):1264-1269. doi: 10.1039/C8AY02610F

45. Selim AS, Perry JM, Nasr MA, Pimprikar JM, Shih SCC. A Synthetic Biosensor for Detecting Putrescine in Beef Samples. ACS Appl Bio Mater. 2022;5(11):5487-5496. doi: 10.1021/acsabm.2c00824

46. Sanz-Vicente I, Rivero I, Marcuello L, Montano MP, de Marcos S, Galbán J. Portable colorimetric enzymatic disposable biosensor for histamine and simultaneous histamine/tyramine determination using a smartphone. Anal Bioanal Chem. 2023;415(9):1777-1786. doi: 10.1007/s00216-023-04583-0

47. Mercogliano R, Santonicola S. Scombroid fish poisoning: Factors influencing the production of histamine in tuna supply chain. A review. LWT. 2019; 114:108374. doi: 10.1016/j.lwt.2019.108374

48. Zhao Y, Wang Y, Li C, et al. Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network. Food Research International. 2021; 141:110122. doi: 10.1016/j.foodres.2021.110122

49. Roselino MN, Maciel LF, Sirocchi V, et al. Analysis of biogenic amines in probiotic and commercial salamis. Journal of Food Composition and Analysis. 2020; 94:103649. doi: 10.1016/j.jfca.2020.103649

50. Schirone M, Esposito L, D’Onofrio F, et al. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods. 2022;11(6):788. doi:10.3390/foods11060788

51. Durak-Dados A, Michalski M, Osek J. Histamine and other biogenic amines in food. J Vet Res. 2020;64(2):281-288. doi: 10.2478/jvetres-2020-0029

52. Tsafack PB, Tsopmo A. Effects of bioactive molecules on the concentration of biogenic amines in foods and biological systems. Heliyon. 2022;8(9):e10456. doi: 10.1016/j.heliyon. 2022.e10456

53. Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. Aquac Fish. 2023;8(4):431-450. doi: 10.1016/j.aaf.2021.02.001

54. Weremfo A, Eduafo MK, Gyimah HA, Abassah-Oppong S. Monitoring the Levels of Biogenic Amines in Canned Fish Products Marketed in Ghana. J Food Qual. 2020; 2020:1-6. doi: 10.1155/2020/2684235

55. Munir MA, Inayatullah A, Badrul HA. Fish Analysis Containing Biogenic Amines Using Gas Chromatography Equipped With Flame Ionization And Mass Spectrometer Detectors. Science and Technology Indonesia. 2021;6(1):1. doi: 10.26554/sti.2021.6.1.1-7

56. Li W, Lu H, He Z, Sang Y, Sun J. Quality characteristics and bacterial community of a Chinese salt-fermented shrimp paste. LWT. 2021; 136:110358. doi: 10.1016/j.lwt.2020.110358

57. González MC, Díaz AC, Moncayo JG, Marín JA. Intoxicación escombroide secundaria al consumo de atún: presentación de un caso. Biomédica. 2020;40(4):594-598. doi: 10.7705/biomedica.5283

58. Álvarez-Rivero V, Cervantes-Zorrilla R, Cárdenas-Hernández ML, González-Chávez MA. Escombroidosis. Acta Médica Grupo Ángeles marzo de. 2018;16(1):63-65.

59. del Río B, Redruello B, Martín MC, Fernández-García M, Ladero-Losada VM, Álvarez-González MA. Citotoxicidad y potencial genotóxico de la tiramina alimentaria: ¿qué sabemos hasta ahora? 13a Reunión RedBAL (2019). https://digital.csic.es/handle/10261/208994

60. Yilmaz N, Özogul F, Moradi M, Fadiloglu EE, Šimat V, Rocha JM. Reduction of biogenic amines formation by foodborne pathogens using postbiotics in lysine-decarboxylase broth. J Biotechnol. 2022; 358:118-127. doi: 10.1016/j.jbiotec.2022.09.003

61. Ahmad W, Mohammed GI, Al-Eryani DA, et al. Biogenic Amines Formation Mechanism and Determination Strategies: Future Challenges and Limitations. Crit Rev Anal Chem. 2020;50(6):485-500. doi:10.1080/10408347.2019.1657793

62. Danchuk AI, Komova NS, Mobarez SN, et al. Optical sensors for determination of biogenic amines in food. Anal Bioanal Chem. 2020;412(17):4023-4036. doi:10.1007/s00216-020-02675-9

63. Feddern V, Mazzuco H, Fonseca FN, de Lima GJMM. A review on biogenic amines in food and feed: toxicological aspects, impact on health and control measures. Anim Prod Sci. 2019;59(4):608. doi:10.1071/AN18076

64. Tian X, Gao P, Xu Y, Xia W, Jiang Q. Reduction of biogenic amines accumulation with improved flavor of low-salt fermented bream (Parabramis pekinensis) by two-stage fermentation with different temperature. Food Biosci. 2021; 44:101438. doi: 10.1016/j.fbio.2021.101438

65. Ayranci UG, Ozunlu O, Ergezer H, Karaca H. Effects of Ozone Treatment on Microbiological Quality and Physicochemical Properties of Turkey Breast Meat. Ozone Sci Eng. 2020;42(1):95-103. doi: 10.1080/01919512.2019.1653168

66. Chmiel M, Cegiełka A, Świder O, et al. Effect of high pressure processing on biogenic amines content in skin-packed beef during storage. LWT. 2023; 175:114483. doi: 10.1016/j.lwt.2023.114483

67. Li Y, Lei Y, Tan Y, Zhang J, Hong H, Luo Y. Efficacy of freeze-chilled storage combined with tea polyphenol for controlling melanosis, quality deterioration, and spoilage bacterial growth of Pacific white shrimp (Litopenaeus vannamei). Food Chem. 2022; 370:130924. doi: 10.1016/j.foodchem.2021.130924

68. Hernández-Macias S, Martín-Garcia A, Ferrer-Bustins N, et al. Inhibition of Biogenic Amines Formation in Fermented Foods by the Addition of Cava Lees. Front Microbiol. 2022;12(818565). doi: 10.3389/fmicb.2021.818565

69. Bennato F, Di Luca A, Martino C, et al. Influence of Grape Pomace Intake on Nutritional Value, Lipid Oxidation and Volatile Profile of Poultry Meat. Foods. 2020;9(4):508. doi: 10.3390/foods9040508

70. Wang J, Fang J, Wei L, et al. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in Atlantic salmon fillets. LWT. 2019; 101:419-426. doi: 10.1016/j.lwt.2018.11.039

71. Huang Y, Yu H, Lu S, et al. Effect and mechanism of ferulic acid inclusion complexes on tyramine production by Enterobacter hormaechei MW386398 in smoked horsemeat sausages. Food Biosci. 2022; 46:101520. doi: 10.1016/j.fbio.2021.101520

72. Jia W, Zhang R, Shi L, Zhang F, Chang J, Chu X. Effects of spices on the formation of biogenic amines during the fermentation of dry fermented mutton sausage. Food Chem. 2020; 321:126723. doi: 10.1016/j.foodchem.2020.126723

73. Requena R, Vargas M, Chiralt A. Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices. Food Chem. 2019; 277:38-45. doi: 10.1016/j.foodchem.2018.10.093

74. Tang H, Darwish WS, El‐Ghareeb WR, et al. Microbial quality and formation of biogenic amines in the meat and edible offal of Camelus dromedaries with a protection trial using gingerol and nisin. Food Sci Nutr. 2020;8(4):2094-2101. doi:10.1002/fsn3.1503

75. Houicher A, Bensid A, Regenstein JM, Özogul F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: A review. Food Biosci. 2021; 39:100807. doi: 10.1016/j.fbio.2020.100807

76. Sun Q, Sun F, Zheng D, Kong B, Liu Q. Complex starter culture combined with vacuum packaging reduces biogenic amine formation and delays the quality deterioration of dry sausage during storage. Food Control. 2019; 100:58-66. doi: 10.1016/j.foodcont.2019.01.008

77. Li C, Zhao Y, Wang Y, et al. Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage. Food Research International. 2021; 147:110476. doi: 10.1016/j.foodres.2021.110476

78. Sun L, Guo W, Zhai Y, et al. Screening and the ability of biogenic amine-degrading strains from traditional meat products in Inner Mongolia. LWT. 2023; 176:114533. doi: 10.1016/j.lwt.2023.114533

79. Wang D, Hu G, Wang H, et al. Effect of Mixed Starters on Proteolysis and Formation of Biogenic Amines in Dry Fermented Mutton Sausages. Foods. 2021;10(12):2939. doi: 10.3390/foods10122939

80. Zhang Y, Zhang J, Lin X, Liang H, Zhang S, Ji C. Lactobacillus strains inhibit biogenic amine formation in salted mackerel (Scomberomorus niphonius). LWT. 2022; 155:112851. doi: 10.1016/j.lwt.2021.112851

81. Ren H, Deng Y, Wang X. Effect of a compound starter cultures inoculation on bacterial profile and biogenic amine accumulation in Chinese Sichuan sausages. Food Science and Human Wellness. 2022;11(2):341-348. doi: 10.1016/j.fshw.2021.11.009

82. Wu J, Mao H, Dai Z. Role of Microorganisms in the Development of Quality during the Fermentation of Salted White Herring (Ilisha elongata). Foods. 2023;12(2):406. doi: 10.3390/foods12020406

83. Sun Y, Hua Q, Tian X, Xu Y, Gao P, Xia W. Effect of starter cultures and spices on physicochemical properties and microbial communities of fermented fish (Suanyu) after fermentation and storage. Food Research International. 2022; 159:111631. doi: 10.1016/j.foodres.2022.111631

84. Dias I, Laranjo M, Potes ME, et al. Autochthonous Starter Cultures Are Able to Reduce Biogenic Amines in a Traditional Portuguese Smoked Fermented Sausage. Microorganisms. 2020;8(5):686. doi: 10.3390/microorganisms8050686

85. Li L, Wen X, Wen Z, Chen S, Wang L, Wei X. Evaluation of the Biogenic Amines Formation and Degradation Abilities of Lactobacillus curvatus From Chinese Bacon. Front Microbiol. 2018;9(1015). doi: 10.3389/fmicb.2018.01015

Published

2023-09-03

How to Cite

Florez Duque, A. V., Moreno Arango, M. A., & Franco Tobón, Y. N. (2023). Biogenic amines found in meat, fish and meat products: Formation and health effects. Hechos Microbiológicos, 14(1), 26–44. https://doi.org/10.17533/udea.hm.v14n1a04

Issue

Section

Artículos de revisión