Bioactive Peptides from Streptomyces

An Updated Review of their Therapeutic Potential

Authors

DOI:

https://doi.org/10.17533/udea.hm.v14n2a02

Keywords:

antimicrobial, antiviral, antitumoral, peptides, resistance, Streptomyces

Abstract

Introduction: Actinobacteria, particularly Streptomyces species, have garnered significant attention in research due to their remarkable capacity to produce secondary metabolites through biosynthetic cluster gene (BCGs). These BCGs possess substantial medicinal potential
on a global scale, especially in the post-Covid-19 era. Objective: This study aims to provide a comprehensive description of the latest and innovative bioactive peptides isolated from diverse species of the genus Streptomyces, highlighting their potential as candidates
for the development of effective therapeutic drugs. Methodology: A literature search was conducted in the PubMed Central (PMC), ScienceDirect, ResearchGate, and Microbiology Society databases. Additionally, Research Rabbit, a bibliometric network software, focusing only on English-language publications between 2018 and 2023. The search terms employed included: Streptomyces, peptides, antimicrobial, antiviral, and antitumoral. Results: The findings of this state-of-the-art review present promising prospects for the vast array of substances derived from secondary metabolites produced by different species of Streptomyces, which hold potential for drug development. Noteworthy, compounds include antibacterial metabolites like gausemicin A-B and cadasides A-B, antiviral metabolites such as siamycin I and valinomycin, and taeanamides A-B and sungsanpin, exhibiting cytotoxicity against various tumor cell lines. Conclusion: Undoubtedly, Streptomyces is poised to play a pivotal role in combating drug resistance,
given its extensive production of bioactive secondary metabolites, particularly antimicrobial peptides. These substances have demonstrated great promise as a compelling source for developing novel drugs targeting diverse microorganisms and relevant pathologies.

|Abstract
= 744 veces | PDF (ESPAÑOL (ESPAÑA))
= 423 veces|

Downloads

Download data is not yet available.

Author Biographies

Nicoll Bilbao Moreno, Universidad Colegio Mayor de Cundinamarca

Estudiante de Bacteriología y laboratorio clínico, Universidad Colegio Mayor de Cundinamarca.

Nelson Alexander Ramírez Roncancio, Estudiante programa de Bacteriología, Universidad Colegio Mayor de Cundinamarca

Estudiante programa de Bacteriología, Universidad Colegio Mayor de Cundinamarca

Walter Andrés Rincón Riveros, Docente

Docente Investigador, grupo REMA, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca

References

1. Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, et al. Antimicrobial Peptides—Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics. 2022;11(10):1417. doi: 10.3390/antibiotics11101417

2. Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol. 2021;11:668632. doi: 10.3389/fcimb.2021.668632

3. Li C, Zhu C, Ren B, Yin X, Shim SH, Gao Y, et al. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem. 2019;183:111686. doi: 10.1016/j.ejmech.2019.111686

4. Haney EF, Straus SK, Hancock REW. Reassessing the Host Defense Peptide Landscape. Front Chem. 2019;7:43. doi: 10.3389/fchem.2019.00043.

5. Wang G. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database. Methods Enzymol. 2022;663:1–18. doi: 10.1016/bs.mie.2021.09.006.

6. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11:582779. doi: 10.3389/fmicb.2020.582779

7. Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules. 2022;27(9):2675. doi: 10.3390/molecules27092675.

8. Hassan M, Flanagan TW, Kharouf N, Bertsch C, Mancino D, Haikel Y. Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential. Pharmaceutics. 2022;15(1):72. doi: 10.3390/pharmaceutics15010072.

9. Erdem Büyükkiraz M, Kesmen Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J Appl Microbiol. 2022;132(3):1573–96. doi: 10.1111/jam.15314

10. Rončević T, Puizina J, Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int J Mol Sci. 2019;20(22):5713. doi: 10.3390/ijms20225713.

11. Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health. 2018;11(1):9–17. doi: 10.1016/j.jiph.2017.08.009.

12. Arias M, Haney EF, Hilchie AL, Corcoran JA, Hyndman ME, Hancock REW, et al. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim Biophys Acta Biomembr. 2020;1862(8):183228. doi: 10.1016/j.bbamem.2020.183228.

13. Lee N, Hwang S, Lee Y, Cho S, Palsson B, Cho BK. Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces. J Microbiol Biotechnol. 2019;29(5):667–86. doi: 10.4014/jmb.1904.04015.

14. del Carratore F, Hanko EK, Breitling R, Takano E. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr Opin Biotechnol. 2022;77:102762. doi: 10.1016/j.copbio.2022.102762.

15. Pacios-Michelena S, Aguilar González CN, Alvarez-Perez OB, Rodriguez-Herrera R, Chávez-González M, Arredondo Valdés R, et al. Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. Front Sustain Food Syst. 2021;5. doi: 10.3389/fsufs.2021.696518

16. Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, et al. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom. 2023;9(6):mgen001028. doi: 10.1099/mgen.0.001028.

17. Olanrewaju OS, Babalola OO. Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol. 2019;103(3):1179–88. doi: 10.1007/s00253-018-09577-y.

18. Bush MJ. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol. 2018;110(5):663–76. doi: 10.1111/mmi.14117

19. Sivalingam P, Hong K, Pote J, Prabakar K. Extreme Environment Streptomyces : Potential Sources for New Antibacterial and Anticancer Drug Leads? Int J Microbiol. 2019;1–20. doi: 10.1155/2019/5283948.

20. Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol. 2020;69(8):1040–8. doi: 10.1099/jmm.0.001232.

21. Lacey HJ, Rutledge PJ. Recently Discovered Secondary Metabolites from Streptomyces Species. Molecules. 2022;27(3):887. doi: 10.3390/molecules27030887

22.Lee N, Kim W, Hwang S, Lee Y, Cho S, Palsson B, et al. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data. 2020;7(1):55. doi: 10.1038/s41597-020-0395-9.

23. Cantillo A, Shapiro N, Woyke T, Kyrpides NC, Baena S, Zambrano MM. Genome Sequences of Actinobacteria from Extreme Environments in Colombia. Microbiol Resour Announc. 2018;7(22):e01384-18. doi: 10.1128/MRA.01384-18.

24. Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M, et al. Bacterial Pigments and Their Multifaceted Roles in Contemporary Biotechnology and Pharmacological Applications. Microorganisms. 2023;11(3):614. doi: 10.3390/microorganisms11030614.

25. Ramirez-Rodriguez L, Stepanian-Martinez B, Morales-Gonzalez M, Diaz L. Optimization of the Cytotoxic Activity of Three Streptomyces Strains Isolated from Guaviare River Sediments (Colombia, South America). Biomed Res Int. 2018;2839356. doi: 10.1155/2018/2839356.

26. Escobar LP, Zambrano MM, Fernández Martínez L. Unmasking the potential as antibiotic makers of three Streptomyces strains isolated in a high-altitude ecosystem in Colombia. Access Microbiol. 2019;1(1A). doi: 10.1099/acmi.ac2019.po0314.

27. Robertsen HL, Musiol-Kroll EM. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel). 2019;8(4):157. doi: 10.3390/antibiotics8040157.

28. Risdian C, Mozef T, Wink J. Biosynthesis of Polyketides in Streptomyces. Microorganisms. 2019;7(5):124. doi: 10.3390/microorganisms7050124.

29. Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol. 2020;69(8):1040–8. doi: 10.1099/jmm.0.001232.

30. Cheng C, Hua ZC. Lasso Peptides: Heterologous Production and Potential Medical Application. Front Bioeng Biotechnol. 2020;8:571165. doi: 10.3389/fbioe.2020.571165.

31. Liu T, Ma X, Yu J, Yang W, Wang G, Wang Z, et al. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem Sci. 2021;12(37):12353–64. doi: 10.1039/d1sc02695j.

32. Vasilchenko AS, Julian WT, Lapchinskaya OA, Katrukha GS, Sadykova VS, Rogozhin EA. A Novel Peptide Antibiotic Produced by Streptomyces roseoflavus Strain INA-Ac-5812 With Directed Activity Against Gram-Positive Bacteria. Front Microbiol. 2020;11:556063. doi: 10.3389/fmicb.2020.556063.

33. Poshvina D V, Dilbaryan DS, Kasyanov SP, Sadykova VS, Lapchinskaya OA, Rogozhin EA, et al. Staphylococcus aureus is able to generate resistance to novel lipoglycopeptide antibiotic gausemycin A. Front Microbiol. 2022;13:963979. doi: 10.3389/fmicb.2022.963979.

34. Tyurin AP, Alferova VA, Paramonov AS, Shuvalov M V, Kudryakova GK, Rogozhin EA, et al. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.*. Angew Chem Int Ed Engl. 2021;60(34):18694–703. doi: 10.1002/anie.202104528.

35. Pusparajah P, Letchumanan V, Law JWF, Ab Mutalib NS, Ong YS, Goh BH, et al. Streptomyces sp.—A Treasure Trove of Weapons to Combat Methicillin-Resistant Staphylococcus aureus Biofilm Associated with Biomedical Devices. Int J Mol Sci. 2021;22(17):9360. doi: 10.3390/ijms22179360.

36. Kittikunapong C, Ye S, Magadán-Corpas P, Pérez-Valero Á, Villar CJ, Lombó F, et al. Reconstruction of a Genome-Scale Metabolic Model of Streptomyces albus J1074: Improved Engineering Strategies in Natural Product Synthesis. Metabolites. 2021;11(5):304. doi: 10.3390/metabo11050304.

37. Wood TM, Martin NI. The calcium-dependent lipopeptide antibiotics: structure, mechanism, & amp; medicinal chemistry. Medchemcomm. 2019;10(5):634–46. doi: 10.1039/c9md00126c.

38. Wu C, Shang Z, Lemetre C, Ternei MA, Brady SF. Cadasides, Calcium-Dependent Acidic Lipopeptides from the Soil Metagenome That Are Active against Multidrug-Resistant Bacteria. J Am Chem Soc. 2019;141(9):3910–9. doi: 10.1021/jacs.8b12087.

39. Kang HS, Kim ES. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts. Curr Opin Biotechnol. 2021;69:118–27. doi: 10.1016/j.copbio.2020.12.016.

40. Feng Z, Ogasawara Y, Nomura S, Dairi T. Biosynthetic Gene Cluster of a d-Tryptophan-Containing Lasso Peptide, MS-271. ChemBioChem [Internet]. 2018;19(19):2045–8. doi: 10.1002/cbic.201800315.

41. Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cellular and Molecular Life Sciences. 2021;78(8):3921–40. doi: 10.1007/s00018-021-03759-0.

42. Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BioDesign Research. 2022:9898241. doi: 10.34133/2022/9898241.

43. Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg Med Chem. 2018;26(23–24):6050–5. doi: 10.1016/j.bmc.2018.11.007.

44. Zhuang L, Huang S, Liu WQ, Karim AS, Jewett MC, Li J. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab Eng. 2020;60:37–44. doi: 10.1016/j.ymben.2020.03.009.

45. Singh VP, Sharma R, Sharma V, Raina C, Kapoor KK, Kumar A, et al. Isolation of depsipeptides and optimization for enhanced production of valinomycin from the North-Western Himalayan cold desert strain Streptomyces lavendulae. J Antibiot (Tokyo). 2019;72(8):617–24. doi: 10.1038/s41429-019-0183-y.

46. Zhang D, Ma Z, Chen H, Ma W, Zhou J, Wang Q, et al. Efficient production of valinomycin by the soil bacterium, Streptomyces sp. ZJUT-IFE-354. 3 Biotech. 2022;12(1):2. doi: 10.1007/s13205-021-03055-5.

47. Su Z, Ran X, Leitch JJ, Schwan AL, Faragher R, Lipkowski J. How Valinomycin Ionophores Enter and Transport K + across Model Lipid Bilayer Membranes. Langmuir. 2019;35(51):16935–43. doi: 10.1021/acs.langmuir.9b03064.

48. Zhang D, Ma Z, Chen H, Lu Y, Chen X. Valinomycin as a potential antiviral agent against coronaviruses: A review. Biomed J. 2020;43(5):414–23. doi: 10.1016/j.bj.2020.08.006

49. Huang S, Liu Y, Liu WQ, Neubauer P, Li J. The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms. 2021;9(4). doi: 10.3390/microorganisms9040780.

50. Cui J, Kim E, Moon DH, Kim TH, Kang I, Lim Y, et al. Taeanamides A and B, Nonribosomal Lipo-Decapeptides Isolated from an Intertidal-Mudflat-Derived Streptomyces sp. Mar Drugs. 2022;20(6):400. doi: 10.3390/md20060400.

51. Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018–2022). Molecules. 2023;28(2):615. doi: 10.3390/molecules28020615.

52. Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, et al. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. Acta Mater Med. 2022;1(4):445–75. doi: 10.15212/amm-2022-0028.

53. Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci. 2021;22(8):3973. doi: 10.3390/ijms22083973.

54. Martin‐Gómez H, Albericio F, Tulla‐Puche J. A Lasso‐Inspired Bicyclic Peptide: Synthesis, Structure and Properties. Chemistry – A European Journal. 2018;24(72):19250–7. doi: 10.1002/chem.201803899.

55. Kumar P, Kizhakkedathu J, Straus S. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018;8(1):4. doi: 10.3390/biom8010004.

56. Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics. 2019;11(11):588. doi: 10.3390/pharmaceutics11110588.

57. Martin-Serrano Á, Gómez R, Ortega P, de la Mata FJ. Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics. 2019;11(9):448. doi: 10.3390/pharmaceutics11090448.

58. Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules. 2020;25(13):3048. doi: 10.3390/molecules25133048.

59. Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. 2020;40(7):978–92. doi: 10.1080/07388551.2020.1796576.

60. Rounds T, Straus SK. Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics. Int J Mol Sci. 2020;21(24):9692. doi: 10.3390/ijms21249692.

Published

2023-12-19

How to Cite

Bilbao Moreno, N., Ramírez Roncancio, N. A., & Rincón Riveros, W. A. (2023). Bioactive Peptides from Streptomyces: An Updated Review of their Therapeutic Potential. Hechos Microbiológicos, 14(2). https://doi.org/10.17533/udea.hm.v14n2a02

Issue

Section

Artículos de revisión