Efecto del uso de biofertilizantes sobre la productividad agrícola

revisión sistemática

Autores/as

  • Daniela Jiménez-Tobón Universidad de Antioquia
  • David Andrés Vahos-Posada Universidad de Antioquia
  • José Julián Galo-Molina Universidad de Antioquia
  • Leonardo Alberto Ríos-Osorio Universidad de Antioquia https://orcid.org/0000-0002-7127-4629

DOI:

https://doi.org/10.17533/udea.hm.v13n2a05

Palabras clave:

biofertilizantes, consorcio microbiano, productividad agrícola

Resumen

Introducción: Los biofertilizantes son productos de origen natural, cuya composición principal son microorganismos que provienen de una matriz ambiental en particular, y que tienen la capacidad de solubilizar o metabolizar diferentes compuestos orgánicos e inorgánicos favoreciendo la disponibilidad y captación de estos en el suelo por parte de las plantas. Además, pueden vivir en simbiosis con una amplia variedad de especies de microorganismos y plantas, por lo que resultan ser productos benéficos que aportan al desarrollo de la agricultura. Objetivo: El objetivo de este trabajo es describir el efecto de los biofertilizantes sobre la productividad de cultivos de interés agrícola, a partir de la literatura científica. Materiales y Métodos: Para poder efectuar el presente estudio, se realizó una búsqueda sistemática en dos bases de datos diferentes, una especializada que corresponde a Sciencedirect, y una multidisciplinaria como Scopus; con el fin de asegurar una exhaustividad en el estudio se complementa la búsqueda con literatura “gris”. Por último, como modelo de trabajo se utilizó la declaración PRISMA. Resultados: Para este estudio fueron seleccionados 62 artículos que cumplieron con los criterios de inclusión y exclusión. Entre los años 2018, 2019 y 2020 se publicó el 56 % del total de artículos analizados; India y China, lideran el número de artículos publicados en la última década. El uso de cultivos puros y consorcios de una gran variedad de géneros de bacterias, hongos y microalgas que han mostrado rendimientos favorables en diferentes cultivos, y todos ellos utilizan mecanismos de acción diferentes tales como la fijación de nitrógeno, solubilización de fosfato, producción de fitohormonas, sideróforos, quitinasas, glucanasas, antibióticos, cianuro de hidrógeno y amoniaco. Diferentes cultivos como cereales, leguminosas, hortalizas, frutas y plantas medicinales fueron inoculados con biofertilizantes y los efectos de estos sobre la productividad se midieron con diferentes variables debido a la diversidad de cultivos y microorganismos usados. Conclusiones: El aumento en la productividad hace de los biofertilizantes una alternativa prometedora para sustituir el uso de fertilizantes químicos en la agroindustria.

|Resumen
= 456 veces | PDF
= 351 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Daniela Jiménez-Tobón, Universidad de Antioquia

Microbiología Industrial y Ambiental. Escuela de Microbiología, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia, Medellín, Colombia.

David Andrés Vahos-Posada, Universidad de Antioquia

Microbiología Industrial y Ambiental. Escuela de Microbiología, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia, Medellín, Colombia.

José Julián Galo-Molina, Universidad de Antioquia

Microbiología Industrial y Ambiental. Escuela de Microbiología, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia, Medellín, Colombia.

Leonardo Alberto Ríos-Osorio, Universidad de Antioquia

Grupo de Investigación en Salud y Sostenibilidad, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia

Citas

Bu WS, Wang FC, Zhang CC, Bruelheide H, Fang XM, Wang HM, et al. The contrasting effects of nitrogen and phosphorus fertilizations on the growth of Cunninghamia lanceolata depend on the season in subtropical China. For Ecol Manage. 2021;482(118874):118874.

Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhowmik SN, et al. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Indic. 2019;105:303–15.

Tripti, Kumar A, Usmani Z, Kumar V, Anshumali. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manage. 2017;190:20–7.

Rini J, Deepthi MP, Saminathan K, Narendhirakannan RT, Karmegam N, Kathireswari P. Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresour Technol. 2020;313:123690.

Kochakinezhad H, Peyvast GA, Kashi AK, Olfati JA, Asadi A. A Comparison of Organic and Chemical Fertilizers for Tomato Production. Journal of Organic Systems. 2012;2:14–25.

Departamento Administrativo Nacional de Estadisticas (DANE). Sistema de información de precios. Insumos agrícolas. [Internet]. 2021 [citado el 10 de octubre de 2022]. Disponible en: http://www.dane.gov.co

Armenta-Bojórquez AD, García-Gutiérrez C, Camacho-Báez JR, Apodaca-Sánchez MÁ, Gerardo-Montoya L, Nava-Pérez E. Biofertilizantes en el desarrollo agrícola de México. Ra Ximhai. 2010;6:51–6.

Emami S, Alikhani HA, Pourbabaee AA, Etesami H, Motasharezadeh B, Sarmadian F. Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere. 2020;14:100196.

Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, et al. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza. 2017;27:1–11.

Soroa–Bell M, Hernández–Fernández A, Soto–Carreño F, Terry–Alfonso E. Identificación de algunas especies de microorganismos benéficos en la rizosfera de gerbera y su efecto en la productividad. Rev Chapingo Ser Hortic. 2009;15:41–8.

Stefan M, Munteanu N, Stoleru V, Mihasan M, Hritcu L. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci Hortic. 2013;151:22–9.

Panwar M, Tewari R, Gulati A, Nayyar H. Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol Plant. 2016;38:278.

Neiverth A, Delai S, Garcia DM, Saatkamp K, de Souza EM, Pedrosa F de O, et al. Performance of different wheat genotypes inoculated with the plant growth promoting bacterium Herbaspirillum seropedicae. Eur J Soil Biol. 2014;64:1–5.

Saber Z, Pirdashti H, Esmaeili M, Abbasian A, Heidarzadeh A. Response of wheat growth parameters to co-inoculation of plant growth promoting rhizobacteria (PGPR) and different levels of inorganic nitrogen and phosphorus. World Appl Sci J. 2012;16:213–9.

Yanni YG, Dazzo FB. Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil. 2010;336(1–2):129–42.

Pellegrino E, Bedini S. Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem. 2014;68:429–39.

Tomic JM, Milivojevic JM, Pesakovic MI. The response to bacterial inoculation is cultivar-related in strawberries. Turkish Journal of Agriculture and Forestry. 2015;39:332–41.

Surtiningsih T. Addition of Non-Symbiosis Microbial Consortium and Arbuscular Mycorrhizal to Increase Growth and Crop Production of Jack Beans Plants (Canavalia ensiformis L.). World Appl Sci J. 2013;26:704–4711.

Hong SH, Lee EY. Phytostabilization of salt accumulated soil using plant and biofertilizers: Field application. Int Biodeterior Biodegradation. 2017;124:188–95.

Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clin (Barc). 2010;135:507–11.

Banco Mundial. Población total. [Internet]. Bancomundial.org. 2021 [citado el 8 de agosto de 2022]. Disponible en: https://datos.bancomundial.org/indicator/SP.POP.TOTL?view=map

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). FAOSTAT: Statistical Databases. [Internet]. Rome, Italy: Food & Agriculture Organization of the United Nations (FAO); 2000 [citado el 6 de octubre de 2020]. Disponible en: http://www.fao.org/faostat/es/#data/RFN

Arrufat J i. Bhopal, una noche que dura ya 30 años. El País. [Internet]. 2014 [citado el 22 de octubre de 2021]. Disponible en: https://elpais.com/elpais/2014/12/03/planeta_futuro/1417610543_153774.html

Benjumeda Muñoz D. Bacterias promotoras del crecimiento vegetal: mecanismos y aplicaciones. Sevilla: Universidad de Sevilla; 2017.

Corrales Ramírez L, Caicedo Lozano L, Ramos Rojas S, Rodríguez Torres J. Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova. 2016;45:15–27.

Instituto Nacional de Seguridad y Salud en el Trabajo de España INSST. Ganando en salud (infografías y vídeos). [Internet]. 2016 [citado el 13 de septiembre de 2021]. Disponible en: https://www.insst.es/documentacion/catalogo-de-publicaciones/ganando-en-salud

Terry Alfonso E, Ruiz Padrón J, Tejada Peraza T. Efecto de un bioproducto a base de Pseudomona aeruginosa en el cultivo del tomate (Solanum licopersicum Mill). Rev Colomb Biotecnol. 2010;12:32–8.

Santillana Villanueva N. Producción de biofertilizantes utilizando Pseudomonas sp.. Ecol Apl. 2006;5(87):1–2.

Kari A, Nagymáté Z, Romsics C, Vajna B, Kutasi J, Puspán I, et al. Monitoring of soil microbial inoculants and their impact on maize (Zea mays L.) rhizosphere using T-RFLP molecular fingerprint method. Applied Soil Ecology. 2019;138:233–44.

Sangoquiza Caiza CA, Viera Tamayo Y, Yánez Guzmán C. Respuesta biológica de aislados de Azospirillum spp. frente a diferentes tipos de estrés. Cent Agríc. 2018;45:40–6.

Chou YM, Shen FT, Chiang SC, Chang CM. Functional diversity and dominant populations of bacteria in banana plantation soils as influenced by long-term organic and conventional farming. Applied Soil Ecology. 2017;110:21–33.

Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2009;77:153–60.

Riahi L, Cherif H, Miladi S, Neifar M, Bejaoui B, Chouchane H, et al. Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L’Hér. under semi-controlled conditions. Ind Crops Prod. 2020;154:112721.

Mishra A, Singh SP, Mahfooz S, Shukla R, Mishra N, Pandey S, et al. External Supplement of Impulsive Micromanager Trichoderma Helps in Combating CO2 Stress in Rice Grown Under FACE. Plant Mol Biol Report. 2019;37(1–2):1–13.

Kantachote D, Nunkaew T, Kantha T, Chaiprapat S. Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology. 2016;100:154–61.

Zhou Y, Bao J, Zhang D, Li Y, Li H, He H. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism. Applied Soil Ecology. 2020;153:103580.

Roberti R, Galletti S, Burzi PL, Righini H, Cetrullo S, Perez C. Induction of defence responses in zucchini (Cucurbita pepo) by Anabaena sp. water extract. Biological Control. 2015;82(3):61–8.

Uchida R. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. . In: Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. Hawaii: University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources; 2000.

B. Patel K, N. Thakker J. Deliberating Plant Growth Promoting and Mineral-Weathering Proficiency of Streptomyces Nanhaiensis Strain Ym4 for Nutritional Benefit of Millet Crop (Pennisetum Glaucum). Journal of Microbiology, Biotechnology and Food Sciences. 2020;9:721–6.

Din M, Nelofer R, Salman M, Abdullah, Khan FH, Khan A, et al. Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports. 2019;22:e00323.

Kumar A, Guleria S, Mehta P, Walia A, Chauhan A, Shirkot CK. Plant growth-promoting traits of phosphate solubilizing bacteria isolated from Hippophae rhamnoides L. (Sea-buckthorn) growing in cold desert Trans-Himalayan Lahul and Spiti regions of India. Acta Physiol Plant. 2015;37:48.

Ríos-Ruiz WF, Torres-Chávez EE, Torres-Delgado J, Rojas-García JC, Bedmar EJ, Valdez-Nuñez RA. Inoculation of bacterial consortium increases rice yield (Oryza sativa L.) reducing applications of nitrogen fertilizer in San Martin region, Peru. Rhizosphere. 2020;14:100200.

Syed-Ab-Rahman SF, Carvalhais LC, Chua E, Xiao Y, Wass TJ, Schenk PM. Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth. Front Plant Sci. 2018;9.

Tripathi A, Awasthi A, Singh S, Sah K, Maji D, Patel VK, et al. Enhancing artemisinin yields through an ecologically functional community of endophytes in Artemisia annua. Ind Crops Prod. 2020;150:112375.

Supraja KV, Behera B, Balasubramanian P. Performance evaluation of hydroponic system for co-cultivation of microalgae and tomato plant. J Clean Prod. 2020;272:122823.

Krell V, Unger S, Jakobs-Schoenwandt D, Patel A V. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol. 2018;34:43–9.

Linu MS, Asok AK, Thampi M, Sreekumar J, Jisha MS. Plant Growth Promoting Traits of Indigenous Phosphate Solubilizing Pseudomonas aeruginosa Isolates from Chilli (Capsicum annuum L.) Rhizosphere. Commun Soil Sci Plant Anal. 2019;50:444–57.

Mahdi W. Efficiency Test of Sinorhizobium fredii Local Isolate Biofertilizer on Growth and Yield of Cowpea Vigna unguiculata L. Basic and Applied Sciences - Scientific Journal of King Faisal University. 2020;21:29–39.

Helaly AA, Hassan SM, Craker LE, Mady E. Effects of growth-promoting bacteria on growth, yield and nutritional value of collard plants. Annals of Agricultural Sciences. 2020;65(1):77–82.

Fernanda de Souza Gênero J, Messa VR, Beladeli MN, Torres da Costa AC, Duarte Júnior JB. Rhizosphere nitrogen-fixing bacteria (free-living) contribute to nitrogen absorption in wheat. Rhizosphere. 2020;16:100245.

Nepolean P, Jayanthi R, Pallavi RV, Balamurugan A, Kuberan T, Beulah T, et al. Role of biofertilizers in increasing tea productivity. Asian Pac J Trop Biomed. 2012;2(3):S1443–5.

Hussain A, Ali S, Rizwan M, Zia ur Rehman M, Javed MR, Imran M, et al. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution. 2018;242:1518–26.

Mahadik S, Kumudini BS. Enhancement of salinity stress tolerance and plant growth in finger millet using fluorescent pseudomonads. Rhizosphere. 2020;15:100226.

Kumawat KC, Sharma P, Sirari A, Singh I, Gill BS, Singh U, et al. Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol. 2019;35:47.

Shang J, Liu B, Xu Z. Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biological Control. 2020;143:104205.

Xia Q, Wang L, Li Y. Exploring high hydrostatic pressure-mediated germination to enhance functionality and quality attributes of wholegrain brown rice. Food Chem. 2018;249:104–10.

Swain M, Blomqvist L, McNamara J, Ripple WJ. Reducing the environmental impact of global diets. Science of The Total Environment. 2018;610–611:1207–9.

Agaras BC, Noguera F, González Anta G, Wall L, Valverde C. Biocontrol potential index of pseudomonads, instead of their direct-growth promotion traits, is a predictor of seed inoculation effect on crop productivity under field conditions. Biological Control. 2020;143:104209.

Olunike Omomowo I, Emmanuel Shittu O, Israel Omomowo O, Nathaniel Majolagbe O. Influence of phosphate solubilizing non-toxigenic Aspergillus flavus strains on maize (Zea mays L.) growth parameters and mineral nutrients content. AIMS Agriculture and Food. 2020;5:408–21.

Selvakumar G, Reetha S, Thamizhiniyan P. Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (vigna mungo L. hepper). World Applied Sciences Journal . 2012;16(10):1368–74.

Abbasi MK, Sharif S, Kazmi M, Sultan T, Aslam M. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 2011;145(1):159–68.

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Producción de hortalizas. Ayuda humanitaria de asistencia y recuperación para comunidades afectadas por la sequía en El Chaco. [Internet]; 2011;2: 1–20. Disponible en: http://www.fao.org/3/a-as972s.pdf

Sociedad Argentina de Nutrición (SAN). Cereales y legumbres: la base de una alimentación sana. Charlas para la comunidad. Charlas para la comunidad. 2011;2:1–4.

Baloch UK. WHEAT: Post-harvest operations edited by AGSI/FAO: Danilo Mejia (technical), Beverly Lewis (language&style) organisation: Pakistan agricultural research council (PARC) [Internet]. 2017. Disponible en: https://www.fao.org/3/ax448e/ax448e.pdf

Mikić A. Phaseolus L. In: CRC Press T& FG, editor. Lexicon of Pulse Crops. Boca Raton, FL: CRC Press; 2018. p. 187–211.

FAO. Millet - Post-harvest Operations. INPhO-Post-Harvest Compendium [Internet]. 2001; 56 p. Disponible en: https://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_MILLET.pdf

Molkenbuhr E. Arroz: temporada 2020/21 y perspectivas. ODEPA M de AC. Santiago de Chile; 2021.

Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology. 2009;42(2):141–9.

Tan K, Radziah O, Halimi M, Khairuddin A, Shamsuddin Z. Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Australian Journal of Crop Science. Aust J Crop Sci. 2015;9(12):1257–64.

Machiavelli, Bhatia P, Sharma P, Khosla B. Characterization for plant growth promoting rhizobacteria (PGPR) towards rice (Oryza sativa) seedling germination and growth. Ann Biol. 2014;30:567–73.

Yanni YG, Dazzo FB. Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil. 2010;336(1–2):129–42.

Islas-Rubio A, Higuera-Ciapara I. SOYBEAN: Post-harvest operations. Ciudad de México: Centro de Investigación y Desarrollo, A.C.; 2002.

Aparicio-Fernandez X, Espinosa-Alonso L. El consumo de leguminosas y sus efectos sobre la salud XII Encuentro Participación de la Mujer en la Ciencia, 2019;1–5. In México: Centro de Investigaciones en óptica; 2019.

Mahdi W. Efficiency Test of Sinorhizobium fredii Local Isolate Biofertilizer on Growth and Yield of Cowpea Vigna unguiculata L. Basic and Applied Sciences - Scientific Journal of King Faisal University. 2020;21(1):29–39.

Ramya SS, Vijayanand N, Rathinavel S. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. International Journal of Recycling of Organic Waste in Agriculture. 2015;4(3):167–73.

Khalil M. Use of biological control and bio-fertilization against Fusarium wilt disease and its effect on growth characteristics and tomato productivity. Current Research in Environmental & Applied Mycology. 2020;10(1):71–84.

Bakr J. yield and quality of mycorrhized processing tomato under water scarcity. Appl Ecol Environ Res. 2017;15(1):401–13.

Ji S, Liu Z, Liu B, Wang Y, Wang J. The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Sci Hortic. 2020;262:109069.

Datta M, Palit R, Sengupta C, Pandit M, Banerjee S. Plant growth promoting rhizobacteria enhance growth and yield of chilli (capsicum annuum L.) under field conditions. Aust J Crop Sci. 2011;5(5):531–6.

de La Luz L, Castro Armas R. Botánica, biología, composición química y propiedades farmacológicas de Artemisia annua L. Revista Cubana de Plantas Medicinales. 2009;14(4).

Kumar P, Sharma N, Sharma S, Gupta R. Rhizosphere stochiometry, fruit yield, quality attributes and growth response to PGPR transplant amendments in strawberry (Fragaria × ananassa Duch.) growing on solarized soils. Sci Hortic. 2020;265:109215.

Tomić J, Pešaković M, Milivojević J, Karaklajić-Stajić Ž. How to improve strawberry productivity, nutrients composition, and beneficial rhizosphere microflora by biofertilization and mineral fertilization? J Plant Nutr. 2018;41(16):2009–21.

Descargas

Publicado

2023-12-11

Cómo citar

Jiménez-Tobón, D., Vahos-Posada, D. A., Galo-Molina, J. J., & Ríos-Osorio, L. A. (2023). Efecto del uso de biofertilizantes sobre la productividad agrícola: revisión sistemática. Hechos Microbiológicos, 13(2). https://doi.org/10.17533/udea.hm.v13n2a05

Número

Sección

Artículos de revisión