Forthcoming

SARIMA model proposal with intervention variables for the forecast of inflation in Mexico

Authors

DOI:

https://doi.org/10.17533/udea.le.n105a359932

Keywords:

Inflation, forecasting, Macroeconomics, Time series, Mexico

Abstract

The variation in the components of the consumer price index (CPI) is a phenomenon that affects different economic sectors in Mexico.

Due to the above, and according to the reviewed literature, several ARIMA and SARIMA test models were proposed for the forecast of inflation in Mexico, based on the annual variation of the National Consumer Price Index (NCPI) by monthly quote, from July 2018 to October 2024; finding that those events that were significant in the price were the extended Covid-19 quarantine and the war in Ukraine. This was done by generating several sets of pulse and step-type intervention variables.

From the analysis performed, it was observed that the SARIMA (0.1.1) (2,0,0) [12] model integrated with a step variable from March 2021- to March 2023 was the best, compared to the other tested models. In the conclusions, some considerations to take into account when making inflation projections with the proposed model are briefly discussed. In the end, it is expected that the information provided in this research can serve as support in decision-making for all the economic actors which operations are impacted by the variation in the inflation rate.

|Abstract
= 1 veces

Downloads

Download data is not yet available.

Author Biography

Iván Vacio Hernández, Universidad Tecnológica de Hermosillo

PhD in Science Education. Researcher professor in the Faculty of Administration of the Technological University of Hermosillo

References

Abad-Basantes, C. A., Hernán, A. B. J., Ávila-Armijos, J. C., & Albuja-Loachamin, L. F. (2024). La Dinámica de la Inflación y el Desempleo: Un Estudio Econométrico Basado en la Curva de Phillips. Journal of Economic and Social Science Research, 4(2), 1-16. http://dx.doi.org/10.55813/gaea/jessr/v4/n2/99

Antipova, T. (2020, May). Coronavirus pandemic as black swan event. In International conference on integrated science (pp. 356-366). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-49264-9_32

Bacchetta, M., Bekkers, E., Piermartini, R., Rubinova, S., Stolzenburg, V., & Xu, A. (2024). COVID‐19 and global value chains: A discussion of arguments on value chain organisation and the role of the WTO. The World Economy, 47(9), 3709-3746. http://dx.doi.org/10.1111/twec.13603

Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of applied econometrics, 18(1), 1-22. http://dx.doi.org/10.1002/jae.659

Bandara, K., Hewamalage, H., Liu, Y. H., Kang, Y., & Bergmeir, C. (2021). Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recognition, 120, .http://dx.doi.org/10.1016/j.patcog.2021.108148

Banxico (El Banco de México) (2019). Resumen ejecutivo trimestral. Base 2ª Quincena Julio 2018. Octubre – Diciembre 2019. https://tinyurl.com/4dx9s3kh

Banxico (El Banco de México) (2021) Anuncio de Política Monetaria, Comunicado de Prensa Junta de Gobierno. https://tinyurl.com/2tccjrmb

Banxico (El Banco de México) (2023). Programa Monetario 2023. https://tinyurl.com/csxrx5vm

Banxico (El Banco de México) (2024) Sistema de Información Financiera (SIF). Inflación - (CP151). https://tinyurl.com/sznnuhxe

Bunnag, Tanattrin. (2024). The Importance of Gold’s Effect on Investment and Predicting the World Gold Price Using the ARIMA and ARIMA-GARCH Model. Ekonomikalia Journal of Economics. 2. 38-52. http://dx.doi.org/10.60084/eje.v2i1.155

Chaparro, M. J. G. (2024). Políticas sociales, estado neoliberal y violencia estructural frente a la austeridad republicana de la cuarta transformación (4T). Ius Comitiãlis, 7(13), 176-200. https://tinyurl.com/2n4ns568

Cheruiyot, B. K., Onyango, R. O., Mogesi, M. B., Kisina, M. M., & Arani, M. M. (2024). Forecasting Inflation in Kenya Using ARIMA Model. African Scientific Annual Review, 1(Mathematics 1), 86-105. http://dx.doi.org/10.51867/asarev.maths.1.1.7

Corpin, S. J. T., Marbella, J. N. P., Kua, S. J. J., Mabborang, R. C., & Lamprea, C. T. (2023). Forecasting Inflation Rate in the Philippines Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model. European Journal of Computer Science and Information Technology, 11(2), 13-36. http://dx.doi.org/10.37745/ejcsit.2013/vol11n21336

Gopinath, G. (2020) The Great Lockdown: Worst Economic Downturn Since the Great Depression, https://tinyurl.com/22a6nt4a

Huang, J., Chu, C. W., & Tsai, Y. C. (2020). Container throughput forecasting for international ports in Taiwan. Journal of Marine Science and Technology, 28(5), 15. https://tinyurl.com/mv5ky6fw

INEGI (Instituto Nacional de Estadística y Geografía) (2018). Índice Nacional de Precios al Consumidor, documento metodológico, segunda quincena de julio de 2018. https://tinyurl.com/yebaw3th

INEGI (Instituto Nacional de Estadística y Geografía) (2019). Censo Económico 2019. Establecimientos y Personal ocupado total según año de inicio de operaciones, método de captación y tipo de propiedad. https://tinyurl.com/4jfdhasy

INEGI (Instituto Nacional de Estadística y Geografía) (2023) Índice Nacional de Precios al Consumidor (INPC)- diciembre de 2023. https://tinyurl.com/46k5rxew

Jadon, A., Patil, A., & Jadon, S. (2024, January). A comprehensive survey of regression-based loss functions for time series forecasting. In International Conference on Data Management, Analytics & Innovation (pp. 117-147). Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-97-3245-6_9

Jiménez-Bandala, Carlos Alberto, Andrade, Luis Antonio, Balam, Alía, Soto-Rodríguez, José Antonio, & Guzmán-Cruz, José

Emiliano (2021). Panorama del mercado laboral mexicano post-pandemia: Recuperación Asimétrica. Revista Internacional De Salarios Dignos, 3(01), 116–132. https://tinyurl.com/mbtrx5zy

Kalaycı, İ., & Hatice, Ö. Ç. (2023). A slice of Latin America’s 20th century history of economic crisis. Scientific Collection «InterConf», (158), 46-53. https://tinyurl.com/y8x23c76

Knight, A. (2023). State, Society, and the Neoliberal Turn in Mexico, c. 1980–c. 2000. State and Nation Making in Latin America and Spain: Volume 3: The Neoliberal State and Beyond, 99. http://dx.doi.org/10.1017/9781108873031.006

Kołbyko, P. (2024). Application of a single-equation SARIMA model for short-term conditional forecast (projection) of CPI price dynamics in Poland. Research Papers in Economics and Finance, 8(1), 128-157. http://dx.doi.org/10.18559/ref.2024.1.1158

Lesmono, W. D., Mardiyati, S., Lestari, D., & Zili, A. H. A. (2021). Forecasting tuberculosis morbidity rate in Indonesia using autoregressive integrated moving average (ARIMA) method. In Journal of Physics: Conference Series (Vol. 1725, No. 1, p. 012031). IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1725/1/012031

Liyanage, D. R. (2023). Inflation forecasting using automatic ARIMA model in Sri Lanka. International Journal of Economic Behavior and Organization, 11(2). http://dx.doi.org/10.11648/j.ijebo.20231102.13

Martínez Espinoza, M., & Ziccardi, A. (2023). Las políticas sociales del gobierno federal y del gobierno de la Ciudad de México durante la pandemia del siglo XXI. Revista mexicana de ciencias políticas y sociales, 68(248), 85-111. http://dx.doi.org/10.22201/fcpys.2448492xe.2023.248.83217

Martínez, M. J. H., & Abarca, O. R. (2024). Análisis de la inflación y su impacto en la recaudación fiscal del impuesto especial de producción y servicios en México, 2018–2022: Analysis of inflation and its impact on the tax collection of the special tax on production and services in Mexico, 2018–2022. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 5(1), 2354-2368. http://dx.doi.org/10.56712/latam.v5i1.1769

Martínez, M. J. H., & Abarca, O. R. (2024). Análisis de la inflación y su impacto en la recaudación fiscal del impuesto especial de producción y servicios en México, 2018–2022: Analysis of inflation and its impact on the tax collection of the special tax on production and services in Mexico, 2018–2022. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 5(1), 2354-2368. http://dx.doi.org/10.56712/latam.v5i1.1769

Miller, José Luis Clavellina (2022). Choques de oferta, estanflación y credibilidad en la post-pandemia/Supply shocks, stagflation and credibility in the post pandemic era. economíaunam, 19(57), 41-52. https://tinyurl.com/3xw9c327

Naseer, S., Khalid, S., Parveen, S., Abbass, K., Song, H., & Achim, M. V. (2023). COVID-19 outbreak: Impact on global economy. Frontiers in public health, 10, 1009393. https://doi.org/10.3389/fpubh.2022.1009393

Piedra-Mayorga, V. M., Granillo-Macías, R., Vázquez-Alamilla, M. Á., Rodríguez-Moreno, R., & Alcántara-Hernández, M. E. (2024). Comportamiento de la economía mexicana desde 1970. Sociedad & Tecnología, 7(1), 69-82. http://dx.doi.org/10.51247/st.v7i1.406

Rivera, G., & Meireles, M. (2023) Capítulo 1. La pos pandemia en América Latina: deuda, inestabilidad financiera y recuperación económica desigual. Senderos de la recuperación pos pandémica: política monetaria, inestabilidad financiera y desarrollo económico, 21. https://tinyurl.com/4w23cbb5

Rose, A. K., & Rose, A. I. G. (2024). A presence of absence: The benign emergence of monetary stability. Journal of International Money and Finance, 146, 103125. http://dx.doi.org/10.1016/j.jimonfin.2024.103125

Rstudio (2025) Posit Software, PBC (version 2024.09.0+375). https://tinyurl.com/4aumxhuj

Saifudin, T., Panjaitan, L. S., Falasifah, S., & Dwi, Y. (2024). Application of Geographically Weighted Logistic Regression in Modeling the Human Development Index in East Java. Jurnal Aplikasi Statistika & Komputasi Statistik, 16(1), 43-57. http://dx.doi.org/10.34123/jurnalasks.v16i1.587

Susanti, Dwi & Maraya, Nisrina & Firman, Sukono. (2024). Prediction of Motor Vehicle Insurance Claims Using ARIMA-GARCH Models. Operations Research: International Conference Series. 5. 86-92. http://dx.doi.org/10.47194/orics.v5i3.331

Zhang, Y., & Meng, G. (2023, March). Simulation of an adaptive model based on AIC and BIC ARIMA predictions. In Journal of Physics: Conference Series (Vol. 2449, No. 1, p. 012027). IOP Publishing. http://dx.doi.org/10.1088/1742-6596/2449/1/012027

Published

2025-11-25

How to Cite

Vacio Hernández, I. (2025). SARIMA model proposal with intervention variables for the forecast of inflation in Mexico. Lecturas De Economia, (1). https://doi.org/10.17533/udea.le.n105a359932

Issue

Section

Articles