Magnesio reforzado con nanopartículas: un material promisorio

Autores/as

  • Asdrúbal Valencia Giraldo Universidad de Antioquia

Palabras clave:

magnesio, aleaciones de magnesio, materiales compuestos con matriz de magnesio, nanomateriales compuestos con matriz de magnesio

Resumen


Algunas aleaciones de magnesio, en razón de su bajo peso específico y su biodegradabilidad, son materiales con muchas posibilidades, en campos como el transporte de superficie, en la industria aeroespacial y en las aplicaciones biomédicas. Su limitación es la reactividad y la moderada resistencia mecánica, por esta razón, en la presente revisión, se hace un recuento de los distintos tipos de refuerzos y procedimientos utilizados para mejorar sus propiedades mecánicas y químicas. Empezando por la acción de varios elementos aleantes y las clases de aleaciones desarrolladas, así como los mecanismos y métodos para su mejora, se continúa con los compuestos con matriz magnésica y los tipos de refuerzos utilizados y se termina con las matrices reforzadas con nanopartículas de distintas clases, que han originado materiales con propiedades únicas y son en la actualidad una frontera de la investigación en metalurgia.

|Resumen
= 152 veces | PDF
= 439 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Asdrúbal Valencia Giraldo, Universidad de Antioquia

Profesor Emérito, Facultad de Ingeniería, Universidad de Antioquia.

Citas

Li, Y. Y., “Present and future of magnesium alloys researches”, China Foundry, p. 1, May. 2004.

Watarai, H., “Trend of research and development for magnesium alloys —reducing the weight of structural materials in motor vehicles —”, Q. Rev. DC. Nurses. Assoc., p. 84, 2006.

Hammond, V. H., Magnesium Nanocomposites: Current Status And ProspectsFor Army Applications, MD, , Army Research Laboratory, Aberdeen Proving Ground, 2011.

Andres, E. A. W., “Recent developments in the manufacturing of components from aluminum, magnesium and titanium based alloys”, Cosmos, vol. 5, no. 1, p. 23, 2009.

Fechner, D., Blawert, C., Hort, N., & K., “Recycling of magnesium drive train components”, Sci. China Ser. E Technol. Sci., vol. 52, no. 1, p. 148, 2009.

Yamashita, A., Z. H. and T. G. L., “Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation”, Mater. Sci. Eng, vol. A300, p. 142, 2001.

Moreno, I. P., “Microstructural stability and creep of rare-earth containing magnesium alloys”, Scr. Mater., vol. 48, p. 1029, 2003.

Fu, S., Jing. X., Chen, Z. et al., “Review on research and development of heat resistant magnesium alloy,” In: Proceedings Of 2012 International Conference On Mechanical Engineering And Material Science (MEMS 2012), p. 611, College of Mechanical Engineering Yangzhou University, Yangzhou 2012.

Zhang, S. et Al, “Effects of deformation parameters on microstructure and mechanical properties of magnesium alloy az31b”, Rare Met., vol. 25, p. 105, 2006.

Mohd Ruzi, H. et Al, A Review Of Workability Of Wrought Magnesium Alloys, N. A. N. M. and S. A. (eds. . A. K. Ariffin, , Universiti Kebangsaan Malaysia, Selangor, 2009.

Yin, D. L., “Superplasticity and cavitation in az31 mg alloy at elevated temperaturas”, Mater. Lett., vol. 59, no. 14, p. 1714.

Watanabe, H. et Al, “Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an az61 magnesium alloy”, J. Acta Mater., vol. 47, p. 3753, 1999.

Fu, S., Jing. X., Chen, Z. et al., “Review on research and development of magnesium alloys,” In: Acta Metall. Sin. (Engl. Lett.),p. 313, Yangzhou University, Yangzhou, China 2008.

Monteiro, W. A., S. J. B. and L. V. da S., Application Of Magnesium Alloys In Transport, W. A. Monteiro, , InTech, Rijeka, Croacia, 2009.

Yin, D. L., Zhang, K. F., Wang, G. F., et al., “Superplasticity and cavitation in az31 mg alloy at elevated temperatures”, Mater. Lett., vol. 59, no. 14–15, pp. 1714–1718, 2005.

Lee, Y. C., Dahle, A. K., St John, D. H., Grain Refinement Of Magnesium, B. B. C. Howard I. Kaplan, John N. Hryn, vol. 36, no. 7, John Wiley, New York, 2000.

Cao, P., Ma, Q., St John, D. H., “Mechanism for grain refi nement of magnesium alloys by superheating”, Scr. Mater., vol. 56, no. 7, p. 633, 2007.

Cao, P., Ma, Q., St John, D. H., “Effect of iron on grain refinement of high-purity mg -al alloys”, Scr. Mater., vol. 51, no. 2, p. 125, 2004.

P., C., Ma, Q., John, S., et al., “Native grain refinement of magnesium alloys”, Scr. Mater., vol. 53,no. 7, p. 841, 2005.

Ma, Q., John, S., H, D., et al., “Characteristic zirconium-rich coring structures in mg-zr alloys”, Scr. Mater., vol. 46, no. 9, p. 649, 2002.

Song, Ch., Han, Q. and Zhai, Q., “Review of grain refinement methods for as-cast microstructure of magnesium alloy”, China Foundry, vol. 6, no. 2, p. 93, 2009.

Willbold, E. et al., “Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium”, Acta Biomater., vol. 11, p. 561, 2015.

Tekumalla, S., S. Seetharaman, A. A. and M. G., “Mechanical properties of magnesium-rare earth alloy systems: a review”, Metals (Basel)., vol. 5, p. 32, 2015.

Lu, Y. et Al, “Effects of rare earths on the microstructure, properties and fracture behavior of mg–al alloys”, Mater. Sci. Eng. A, vol. 278, p. 66, 2000.

Fatemi, M., Zarei-Hanzki, A., “Review on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures”, J. Ultrafine Grained Nanostructured Mater., vol. 48, no. 2, p. 69, 2015.

Singh, K. and N. M. S., “Magnesium alloys and its machining: a review”, Int. Res. J. Eng. Technol., vol. 03, no. 05, p. 2111, May. 2016.

Poinern, G. E. J, S. B. and D. F., “Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopedic implant”, Am. J. Biomed. Eng., vol. 2, no. 6, p. 218, 2012.

Erbel, R. et al., “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial”, Lancet, vol. 369, no. 9576, p. 1869, 2007.

Hombergsmeier, E., “AEROMAG-magnesium suitable for aeronautic applications?,” In: Sixth European Aeronautics Days –Aerodays 2011Mar. 2011.

Li, L., G. J. and W. Y., “Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid”, Surf. Coatings Technol., vol. 185, no. 1, p. 92, 2004.

Gu, X. N., Zheng W, Cheng Y, Et al., “A study on alkaline heat treated mg-ca alloy for the control of the biocorrosion rate”, Acta Biomater., vol. 5, no. 7, p. 2790, 2009.

Zhang X P, Zhao Z P, Wu F M, Et al., “Corrosion and wear resistance of az91d magnesium alloy with and without microarc oxidation coating in hank’s solution”, J. Mat. Sci., vol. 42, p. 8523, 2007.

Xu, L., Pan F., Yu, G., Et al., “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy”, Biomaterials, vol. 30, no. 8, p. 1512, 2009.

Wang, H. X., Guan, S. K., Wang, X., Et al., “In vitro degradation and mechanical integrity of mg –zn -ca alloy coated with ca –deficient hydroxyapatite by the pulse electrodeposition process”, Acta Biomater., vol. 6, no. 5, p. 1743, 2010.

Gu, X. N., Zheng, Y. F., Lan, Q. X., Et al., “Surface modification of mg-1ca alloy to slow down its biocorrosion by chitosan”, Biomed. Mater., vol. 4, no. 4, p. 44109, 2009.

Gu, X. N., Zheng, Y. F., Zhong, S. P., Et Al, “Corrosion of, and cellular responses to mg-zn-ca bulk metallic glasses”, Biomaterials, vol. 3, no. 6, p. 1093, 2010.

Zberg, B., Uggowitzer, P. J. and Löffler, J. F., “Mg-zn-ca glasses without clinically observable hydrogen evolution for biodegradable implants”, Nat. Mater., vol. 8, no. 11, p. 887, 2009.

Gu, X. N., Y. F. Z., “A review on magnesium alloys as biodegradable materials”, Front. Mater. Sci. China, vol. 4, no. 2, p. 111, 2010.

Zheng, M.Y., W.C. Zhang, K. W. and C. K. Y., “The deformation and fracture behavior of sicw/az91 magnesium matrix composite during in-situ tem straining”, J. Mater. Sci., vol. 38, p. 2647, 2003.

Viswanathan, V., T. Laha, K. Balani, A. A. S. S., “Challenges and advances in nanocomposites processing”, Mater. Sci. Eng. R, vol. 54, p. 121, 2006.

Wong, W. L. E., Gupta, M., “Development of mg/cu nanocomposites using microwave assisted rapid sintering”, Comp Sci Technol, vol. 67, p. 1541, 2007.

Pekguleryuz, M. and M. C., “Creep resistance in magnesium alloys”, Int. Mater. Rev., vol. 55, 197AD.

Nie, C. Z., J. J. Gu, J. L. L. and D. Z., “Investigation on microstructures and interface character of b4c metal matrix composite fabricate by mechanical alloying”, J Alloy. Compd, vol. 454, p. 118, 2008.

Capel, H., Et al., “Correlation between manufacturing conditions and properties fibre reinforced mg”, Mater. Sci. Techn., vol. 16, p. 765, 2000.

Jayamathy, M., S.V. Kailas, K. Kumar, S. S. and T. S. S., “The compressive deformation and impact response of a magnesium alloy: influence of reinforcement”, Mater. Sci. Eng. A, vol. 393, p. 27, 2005.

Dey, A. and K. M. P., “Magnesium metal matrixcomposites: a review”, Adv. Mater. Sci., vol. 42, p. 58, 2015.

Ye, H. Z. and X. Y. L., “Review of recent studies in magnesium matrix composites”, J. Mater. Sci., vol. 39, p. 6153, 2004.

Ponappa, K., Fabrication Of Magnesium Based Metal Matrix Composites By Two Stir Casting And Their Grindability Studies, Indian Institute of Technology Delhi, Delhi, India.

Abdulgadir, M. M., Demir, B., “Magnesium matrix composites machining aspects: a review”, Int. Res. J. Eng. Technol., vol. 04, no. 04, p. 11, 2017.

Hu, B., Et al., “Interfacial and fracture behavior of short-fibers reinforced ae44 based magnesium matrix composites”, J. Alloy. Comp, p. 504, 2010.

Trojanova, Z., Et al., “Magnesium alloys based composites,” In: Magnes. Alloy. -Des. Process. Prop., F. Czerwinski, , Intech, Rijeka, Croatia, 2011.

Wang, X. J., Et al., “The interfacial characteristics of sicp/az91 magnesium matrix composites fabricated by stir casting”, J. Mater. Sci., vol. 44, p. 2759, 2009.

Matej Steinacher, M., P. M. and F. Z., “Interfaces in the magnesium-matrix composites”, RMZ –M&G, vol. 60, p. 239, 2013.

Shin, D., Microstructural Characteristics Of Magnesium Metal Matrix Composites, Sc. Thesis, M. Sc, Florida, USA, 2012.

Lim, C. Y. and M. G., “Wear behavior of sicp –reinforced magnesium matrix composites”, Wear, vol. 255, p. 629, 2003.

Zheng, M., K. W. and C. Y., “Effect of interfacial reaction on mechanical behavior of sicw/az91 magnesium matrix composites”, Mater. Sci. Eng., vol. A318, p. 50, 2001.

Mounib, M., Et al., “Reactivity and microstructure of al2o3-reinforced magnesium-matrix composites”, Adv. Mater. Sci. Eng., vol. 2014, p. 5, 2014.

Qi-Chuan Jiang, Q.-C. and H. W., “Fabrication of tic particulate reinforced magnesium matrix composites”, Scr. Mater., vol. 48, p. 715, 2003.

Zhang, X., L. Lihuab, M. N. and W. H., “New in-situ synthesis method of magnesium matrix composites reinforced with tic particulates”, Mater. Res., vol. 9, no. 4, 2006.

Wang, H. Y., Et al, “Fabrication of tib2 and tib2–tic particulates reinforced magnesium matrix composites”, Mater. Sci. Eng. A, vol. 372, p. 109, 2004.

Shamekh, M. E., Processing And Characterization Of Mg Matrix Composites Reinforced With TiC And TiB2 Phases Using An In-Situ Reactive Infiltration Technique, Ph D Thesis, Ph D Thesis, (Mechanical Engineering), Concordia University, Montreal, Montreal, 2001.

Kusnierczyk, K. and M. B., “Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials”, J. Biomater. Appl., vol. 0, p. 1, 2016.

Zhang, Z., Chen, D. L., “Contribution of {orowan} strengthening effect in particulate-reinforced metal matrix nanocomposites”, Mat. Sci. Eng, vol. 483?484, p. 148, 2008.

Sanaty-Zadeh, A., “Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of hall–petch effect”, Mat. Sci. Eng A, vol. 531, p. 112, 2012.

Uddin, S. M., Et al., “Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites”, Comp. Sci. Technol, vol. 70, p. 2253, 2010.

Bakshi, S.R.; Lahiri, D. and Agarwal, A., “Carbon nanotube reinforced metal composites-a review”, Int. Mater. Rev., vol. 55, p. 42, 2010.

Trojanova, Z.; Lukac, P.; Ferkel, H. and R. W., “Internal friction in microcrystalline and nanocrystalline mg”, Mat. Sci. Eng. A, vol. 370,p. 154, 2004.

Deng, C. F., Wang, D. Z., Zhang, X. X. and Ma, Y. X., “Damping characteristics of carbon nanotube reinforced aluminum composite”, Mater. Lett., vol. 61, p. 3229, 2007.

Shehata, F., Fathy, A., Abdelhameed, M. and Mustafa, S. F., “Preparation and properties of al2o3 nanoparticle reinforced copper matrix composites by in situ processing”, Mater. Des., vol. 30, p. 2756, 2009.

Ferkel, H. and Mordike, B. L., “Magnesium strengthened by sic nanoparticles”, Mat. Sci. Eng A, vol. 298, p.193, 2001.

Casati, R., Vedani, M., “Metal matrix composites reinforced by nano-particles—a review”, Metals (Basel)., vol. 4, p. 65, 2014.

Azouni, M. A., Casses, P., “Thermophysical properties effects on segregation during solidification”, Adv. Colloids Interf. Sci., vol. 75., p. 83, 1998.

Li, X., Yang, Y., Weiss, D., “Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast aluminum alloy a356”, Metall. Sci. Technol., vol. 26, no. 2, p. 12, 2008.

Tu, J. P., Et al., “Preparation and properties of tib2 nanoparticles reinforced copper matrix composites by in situ processing”, Mater. Lett, vol. 52, p. 448, 2002.

Yue, N. L., Lu, L. and Lai, M. O., “Application of thermodynamic calculation in the in situ process of al/tib2”, Compos. Struct., vol. 47, p. 691, 1999.

Hwang, S., Nishimura, C. and McCormick, P. G., “Compressive mechanical properties of mg-ti-c nanocomposite synthesized by mechanical milling”, Scr. Mater, vol. 44, p. 2457, 2001.

Prasad, Y. V. R. K., Rao, K. P., Gupta, M., “Hot workability and deformation mechanisms in mg/nano–al2o3 composite”, Compos Sci Technol, vol. 69, p. 1070, 2009.

Gupta, M., Wong, W. L. E., “Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering”, Scr. Mater, vol. 52, no. 6, p. 479, 2005.

Paramsothy, M., Hasan, S. F., Srikanth, N., et al., “Enhancing tensile/compressive response of magnesium alloy az31 by integrating with al2o3 nanoparticles”, Mater. Sci. Eng. A, vol. 527, p. 162, 2009.

Matin, A., Faramaz, F. S. and A. H. R., “Microstructure and mechanical properties of mg/sic and az80/sic nano-composites fabricated through stir casting method”, Mater. Sci. Eng. A, vol. 625, p. 81, 2015.

Srivatsan, T. S., Et al., “Mechanical behavior of a magnesium alloy nanocomposite under conditions of static tension and dynamic fatigue”, J. Mater. Eng.Perform., vol. 22, no. 2, p. 439, 2013.

Lu, L., Lai, M. O., Liang, W., “Magnesium nanocomposite via mechanochemical milling”, Compos. Sci. Technol., vol. 64, p. 2009, 2004.

Liu, J., High Volume Fraction Mg-Based Nanocomposites: Processing, Microstructure And Mechanical Behavior, Ph. D. Thesis, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, 2013.

Chin Tjong, S., “Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties”, Adv. Eng. Mater., vol. 9, no. 8, p. 639, 2007.

Hassan, S. F., “Processing, microstructure and mechanical properties of a tio2 nanoparticles reinforced magnesium for biocompatible application”, Met. Res. Technol., vol. 114, no. 214, p. 1, 2017.

Liew, K. M., Et al., “On the study of elastic and plastic properties of multi walled carbon nanotubes under axial tension using molecular dynamics simulation”, Acta Mater., vol. 52, p. 2521, 2004.

Shimizu, Y., “High strength magnesium matrix composites reinforced with carbon nanotube,” In: Magnes. Alloy. -Des. Process. Prop., F. Czerwinski, , Intech, Rijeka, Croatia, 2011.

Li, Q., Et al., “Improved processing of carbon nanotube/magnesium alloy composites”, Compos. Sci. Technol., vol. 69, p. 1193, 2009.

Dieringa, H., “Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review”, J Mater Sci, vol. 46, p. 289, 201AD.

Zhou, X., Et al., “Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites”, J. Nanomater., vol. 2012, p. 4, 2012.

Abdelrazek, K., “A new-developed nanostructured mg/hap nanocomposite byhigh frequency induction heat sintering process”, Int. J. Electrochem, vol. 7, p. 10709, 2012.

Wu, G., Et al., “Dual-phase nanostructuring as a route to high-strength magnesium alloys”, Nature, vol. 545, no. 04, p. 80, May. 2017.

Descargas

Publicado

2018-11-20

Cómo citar

Valencia Giraldo, A. (2018). Magnesio reforzado con nanopartículas: un material promisorio. Revista Colombiana De Materiales, (12), 1–31. Recuperado a partir de https://revistas.udea.edu.co/index.php/materiales/article/view/336457

Número

Sección

Artículos