LOS NANOMETALES

  • Asdrúbal Valencia Giraldo Universidad de Antioquia

Resumen

.

|Resumen
= 254 veces | PDF
= 93 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Asdrúbal Valencia Giraldo, Universidad de Antioquia

Profesor emérito, Departamento de Materiales, Facultad de Ingeniería, Universidad de Antioquia.

Citas

Gleiter, “Nanostructured materials; basic concepts and microstructure”, Acta Materialia, Vol. 48, 2000, p. 1.

Zhu, Yutian T. and Xiaozhou Liao, “Nanostructured materials. Retaining ductility”, Nature Materials, Vol. 3, june 2004, p. 351.

Benjamin, John S., “Dispersion strengthened superalloys by mechanical alloying”, Metall. Trans., Vol. 1,, No. 10, 1970, p. 2943.

Cao, W., “Synthesis of Nanomaterials by High Energy Ball Milling”, Skyspring Nanomaterials, Inc.; http://www.ssnano.com

Chen, Ying et al., “One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process” , Science and Technology of Advanced Materials, Vol. 7, No. 8, 2006, p. 839.

Cao, W., “Synthesis of Nanomaterials by High Energy Ball Milling”, Skyspring Nanomaterials, Inc.; [http://www.ssnano.com]

Chen, Ying et al., “One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process” , Science and Technology of Advanced Materials, Vol. 7, No. 8, 2006, p. 839.

Murty, B. S. and S. Ranganathan, “Novel materials synthesis by mechanical alloying/milling”,International Materials Reviews, Vol. 43, No.3, 1998, p. 105

Chen, Y., “Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling”,Chemical Physics Letters, Vol. 299, Nos. 3–4, 1999, p. 260.

Martin, G. and E. Gaffet, “Mechanical alloying: far from equilibrium phase transitions”, J. Phys. Suppl. Coll., Vol. 51, No. C4, 1990, p. C- 4/71.

Chung, K. H. et al, “Grain growth behavior of cryomilled INCONEL 625 powder during isothermal heat treatment”, Metall. Mater. Trans. A, Vol. 33A, 2002, p. 125.

Lee, J. et al, “Grain growth of nanocrystalline Ni powders prepared by cryomilling”, Metall. Mater. Trans. A, Vol. 32A, 2001, p. 3109.

Perez, R. J. et al., “Grain Growth of Nanocrystalline Cryomilled Fe-Al Powders”, Metall. Mater. Trans. A, Vol. 29A, 1998, p. 2469.

Akash, Verma et al., “Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites”, Metall Mat. Trans. A, Vol. 42, 2011, p. 1127.

Zhang, X. et al, “Evidence for the formation mechanism of nanoscale microstructures in cryomilled Zn powder”, Acta Mater., Vol. 49, 2001, p. 1319.

Zhou, F. et al., “High grain size stability of nanocrystalline Al prepared by mechanical attrition”, J. Mater. Res., Vol. 16, 2001, p. 3451.

Zhou, F. J. Lee, and E.J. Lavernia, “Grain growth kinetics of a mechanically milled nanocrystalline Al”, Scripta Mater., Vol. 44, 2001, p. 2013.

Eckert, J. et al., “Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition”, J. Mater. Res., Vol. 7, 1992, p. 1751.

Rojas, P. A. y E. J. Lavernia, “Estudio comparativo de los efectos impuestos por los procesos de molienda criogénica y molienda de alta energía sobre el titanio” Síntesis Tecnológica, Vol.4, No. 1, 2009, p. 11.

Huang, J. Y. et al., “Grain Structures of Nanostructured Cu Processed by Cryomilling”, Phil.Mag. A, Vol. 83, 2003, p. 1407.

Zhou, F. et al., “Nanostructure in an Al-Mg-Sc Alloy Processed by Low-Energy Ball Milling at Cryogenic Temperature”, Met. Mat. Trans. A, Vol. 34, 2003, p. 1985.

Koch, C.C., “The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review”, Nanostruct. Mater., Vol. 2, 1993, p. 109.

Rosochowski, Andrzej, “Processing Metals by Severe Plastic Deformation”,Solid State Phenomena, Vol. 13, 2005, p. 101.

Suryanarayana, C., “Mechanical alloying and milling”, Progress in Materials Science, Vol. 46, 2001, p. 1.

Tao, N.R. et al., “Surface nanocrystallization of iron induced by ultrasonic shot peening”, Nanostruct. Mater., Vol. 11, 1999, p. 433.

Meletis, E.I. and Hochman, R.F., “Corrosion properties of surface-modified materials”, J. Metals, Vol. 39, 1987, p. 25.

Liu, G., et al., “Low carbon steel with nanostructured surface layer induced by high energy shot peening”, Scr. Mater., Vol. 44, 2001, p. 1791.

Tong, W.P. et al, “Nitriding iron at low temperature”, Science, Vol. 299, 2003, p. 686.

Villegas, J., Dai, K., Shaw, L. and Liaw, P., “Experiments and modeling of the surface nanocrystallization and hardening (SNH) process, processing and properties of structural nanomaterials”, MS&T 2003, p.61.

Valiev, R.Z., Krasilnikov, N.A., Tsenev, N.K.,” Plastic Deformation of Alloys with Submicro-Grained Structure”, Mater. Sci. Eng. , Vol. A137, 1991, p. 35.

Valiev, R. Z., R. K. Islamgaliev and I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation” Progr. Mat. Sci., Vol. 45, 2000, p. 103.

Segal V. M., Reznikov V. I., DrobyshevskiyA. E.,Kopylov V. I., “Plastic working of metals by simple shear”, Russian Metallurgy (Metally), Vol. 1, 1981, p. 99.

Segal, V. M., “Mater. Materials processing by simple shear”, Sci. Eng., Vol. A197, 1995, p. 157.

Valiev, R. Z. and T. G. Langdon, “Principles of equal channel angular pressing as a processing tool for grain refinement”, Prog Mater Sci, Vol. 51, 2006, p. 881.

Valiev, R.Z., A.V. Korznikov, and R.R. Mulyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation”, Mater. Sci. Eng. A, Vol. 186, 1993, p. 141.

Valiev, R., Z, N. A. Enikeev and X. Sauvage, “Superstrength of nanostructured alloys produced by SPD processing”, III Nanotechnology International Forum, Journal of Physics: Conference Series, Vol. 291, 2011, p. 012029

“Nanostructuring by Severe Plastic Deformation” [http://www.ipam.ugatu.ac.ru/spd.html]

Valiev, R. Z., “Developing SPD methods for processing bulk nanostructured materials with enhanced properties”, Metals and Materials International, Vol. 7, No. 5, 2001, p. 413.

LaMcos, “Dynamics and Control of Structures”, [http://lamcos.insa-lyon.fr/front/equipements.php?L=2]

Edalati, K. and Z. Horita, “Scaling-Up of High Pressure Torsion Using Ring Shape”, Materials Transactions, Vol. 50, 2009, p. 92.

Tasaki, A., et al, “Magnetic properties of ferromagnetic metal fine particles prepared by evaporation in argon gas”, Jap. J. Appl. Phys., Vol. 4, No. 10, 1965, p. 707.

Chow, G.-M., Klemens, P.G. and Strutt, P.R., 2Nanometer-size fiber composite synthesis by laser-induced reactions”, J. Appl. Phys., Vol. 66, No. 7, 1989, p. 3304.

Hahn, H. and Averback, R. S., “The production of nanocrystalline powders by magnetron sputtering”, Appl. Phys. Lett., Vol. 67, No. 2, 1990, p. 1113.

Kaveh Edalati and Zenji Horita, “Scaling-Up of High Pressure Torsion Using Ring Shape”, [http://www.lm-foundation.or.jp/english/abstract-vol42/abstract/89.html]

Granqvist, C. G. and Buhrman, R.A., “Ultrafine metal particles”, J. Appl. Phys., Vol. 47, No. 5, 1976, p. 2200.

Ganz, Charles R., “Simple rotary evaporator adapter for use in thin film evaporation with an inert gas stream”, Anal. Chem., Vol. 45, No. 8, 1973, p. 1567.

Kruis, Frank Einar, Synthesis of nanoparticles in the gas phase for functional applications, Ph. D. Thesis, Universität Duisburg, Bergen op Zoom, Holland, 2001.

Dehlinger, U. and F. Giesen, “X - ray Investigation of the System Copper – Tin”, Z. Metallkunde , Vol. 24, 1932, p. 197.

Raub, E. and A. Engel, “Structure of galvanic alloys depositions. Cu – Pb and Ag- Bi”, Z. Metallkunde, Vol. 41, 1950, p. 485.

Robertson, A., U. Erb and G. Palumbo, "Practical applications for electrodeposited nanocrystalline materials", Nano Structured Materials, Vol. 12, 1999, p. 1035.

SrHarsha P, “inert gas condensation method”, [http://shellzero.wordpress.com/2012/05/14/inert-gas-condensation-method/]

Haasz, T. R. et al, "Intercrystalline Density of Nanocrystalline Nickel", Scripta Metall. et Mater. Vol. 32, 1995, p. 423.

Peraldo Bicelli, Luisa et al. “Review of Nanostructural Aspects of Metal Electrodeposition”,Int. J. Electrochem. Sci., Vol. 3, 2008, p.356.

Turunen, Erja et al., “ Parameter optimization of HVOF sprayed nanostructured alumina and alumina-nickel composite coatings” ”, Surface Coatings & Technology, Vol. 200, Nos. 16-17, 2006, p. 4987.

Kumar Singla, M.j , H. Singh and V. Chawla, “Thermal Sprayed CNT Reinforced Nanocomposite Coatings – A Review”,Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No.8, 2011, p. 717.

Leblanc, L., “Abrasion and sliding wear of nanostructured ceramic coatings”, Thermal Spray 2003, Advancing the science & applying the technology, C. Moreau and B. Marple (eds.),ASM International, Materials Park, Ohio, USA, 2003, p. 291.

Chawla, V., et al., “Performance of Plasma Sprayed Nanostructured and Conventional Coatings, Journal of the Australian Ceramic Society, Vol. 44, No. 2, 2008, p. 56.

Bonini, M. et al, “A New Way to Prepare Nanostructured Materials: Flame Spraying of Microemulsions”,J. Phys. Chem. B, Vol. 106, 2002, p. 6178.

https://www.highpowermedia.com/blog/3136/thermal-spraying-of-liners;

Hono, K. et al, “Atom – probe studies of nanocrystalline microstructural evolution in some amorphous alloys”, Materials Transactions of JIM, Vol. 36, No. 7, 1995, p. 909.

Lesz, S., “Investigations of crystallization behavior of Co80Si9B11 amorphous alloy”, Archives of Materials Science and Engineering, Vol 28, No . 2, 2007, p. 91.

Lu, K., “Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure and properties”, Mat. Sc Eng., R16, 1996, p. 161.

Wen, Ming et al. , “Soft magnetic Co–Fe–B–P and Co–Fe–V–B–P amorphous alloy nano-particles prepared by aqueous chemical reduction”, Journal of Alloys and Compounds, Vol. 417, Nos. 1–2, 2006, p. 245.

http://www.cec.uchile.cl/~mpilleux/id42a/Trabajos/1Amorfos/SolidosAmorfos.html

Mukhopadhyay, S. M., “Key attributes of nanoscale materials and special functionalities emerging from them”, Nanoscale Multifunctional Materials: Science and Applications, Sharmila M. Mukhopadhyay (ed.), John Wiley, Hoboken, N. J. 2012, p. 16

Kreibig, U., and Vollmer, M., Optical Properties of Metal Clusters, Springer- Verlag, Berlin, 1996.

Liz – Marzán, Luis, “Nanometals formation and color”, Materials Today, Feb. 2004, p. 26.

Xuang, Z. et al, “Gold nanoparticles: Interesting optical properties an recenta applications...” , Nanomedicine, Vol. 2, No. 5, 2007, p. 681.

Zakery, A. and H Shahmirzaee, “The effect of graded nanometal particles and their shape on the enhancement of nonlinear optical properties of oxide glasses”, J. Phys. D: Appl. Phys, Vol. 41, 2008, p. 225106.

Ruppin, R., “Evaluation of extended Maxwell-Garnett theories”, Optics Communications, Vol. 182, 2000, p. 273.

Hornyak, Gabor L., Charles J. Patrissi and Charles R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit”, J. Phys. Chem. B, Vol. 101, No. 9, 1997, p. 1548.

Link, S., Z. L. Wang Z L, and El-Sayed, M. A..”Alloy formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition”,. The Journal of Physical Chemistry B, Vol. 103, No. 18, 1999, p. 3529.

Major, K. J. De C. and S. O. Obare, “Recent advances in the synthesis of plasmonic bimetallic nanoparticles”, Plasmonics, Vol. 4, No. 1, 2009, p. 61.

Barron, Laurence D., “An Introduction to Chirality at the Nanoscale”, Chirality at the Nanoscale: Nanoparticles, Surfaces, Materials and more, David B. Amabilino (ed.), Wiley - VCH Verlag, Weinheim, 2009, p. 3

Hache, F, et al., “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects”, J. Opt. Soc. Am. B, Vol. 3, No. 12, 1986, p. 1647.

Tokizaki, T., et al., “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass”, Appl. Phys. Lett., Vol. 65, 1994, p. 941

Weertman, J. R., “Mechanical Behavior of Nanocrystalline Metals”, Nanostructured materials; processing, properties and applications, Koch, C. C. (ed.), William Andrews Publishing , Norwich, N. Y., 2002, p. 397.

Shen, T.D., Koch, C. C. “Formation, solid solution hardening and softening of nanocrystalline solid solutions prepared by mechanical attrition”, Acta Mater; Vol. 44, 1996, p. 753.

Koch, C. C., “Optimization of strength and ductility in nanocrystalline and ultrafine grained Metals”, Scripta Materialia, Vol. 49, 2003, p. 657

Driver, J. H., “Stability of nanostructured metals and alloys”, Scripta Materialia, Vol. 51, 2004, p. 819.

Morris, D. G., “The origins of strengthening in nanostructured metals and alloys”,Revista de Metalurgia, Vol. 46, No. 2, 2010, p. 173.

Lewandowska, M., A. Zagorski, and K. J. Kurzydłowski, “Mechanical and Physical Properties of Nano-Metals”, Materials Science Forum, Vols. 654 - 656, 2010, p. 1110.

Valiev, R .Z., R. K. Islamgaliev and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Progress in Materials Science, Vol. 45, 2000, p. 103.

Valiev, R. Z. et al, “Bulk Nanostructured Metals for Innovative Applications”, JOM, Vol. 64, No. 10, 2012, p.1134.

Krasilnikov, N., et. al, "Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation", Solid State Phenom., Vol. 49, 2005, p. 101.

Valiev, R. Z. et al, “Bulk Nanostructured Metals for Innovative Applications”, JOM, Vol. 64, No. 10, 2012, p.1134,

T. Fujita, Z. Horita, and T.G. Langdon, “Using Grain Boundary Engineering to Evaluate the Diffusion Characteristics in Ultrafine-grained Al-Mg and Al-Zn Alloys”, Mater. Sci. Eng. A, Vol. 371 A, 2004, p. 241.

Valiev, R., Z, N. A. Enikeev and X. Sauvage, “Superstrength of nanostructured alloys produced by SPD processing”, III Nanotechnology International Forum, Journal of Physics: Conference Series, Vol. 291, 2011, p. 012029

Weeterman, Julia R., “Mechanical Behavior of Nanocrystalline Metals”, Nanostructured Materials. Processing, Properties and Potential Applications, Carls. C. Koch (ed.), Noyes Publications, Norwich, N. Y., 2002, p. 397.

Nieh, T. G., and Wadsworth, J., “Hall-Petch relation in nanocrystalline solids”, Scripta Met. Mat., Vol. 25, 1991, p. 955.

Armstrong, R. W. et al., "The Limiting Grain Size. Dependence of the Strength of a Polycrystalline Aggregate," Phil. Mag., Vol. 14, 1966, p. 943.

Smith, T. T. et al, “Pile-Up Based Hall-Petch Considerations at Ultra-Fine Grain Sizes”, MRS Proceedings, Vol. 362, 1995, p. 1994.

Li, J. C. M., “Petch relation and grain boundary sources”, Trans. TMS-AIME, Vol. 227, 1963, p. 239.

Li, J. C. M., and Chou, Y. T., “The role of dislocations in the flow stress-grain size relationships”, Metall. Trans., Vol. 1, 1970, p. 1145.

Meyers, M. A., and Ashworth, E., “A model for the effect of grain size on the yieldstress of metals”, Phil. Mag. A, Vol. 46, 1982, p. 737.

Koch, C. C., “Optimization of strength and ductility in nanocrystalline and ultrafine- grained materials”, Scr. Mater., Vol. 49, 2003, p. 657.

Jia, Y. et al, “Deformation behavior and plastic instabilities of ultrafine-grained titanium”, Appl. Phys. Lett., Vol. 79, 2001, p. 611.

Zhu, Y. T. and X. Z. Liao, “Nanostructured materials. Retaining strength and ductility”, Nat. Mater., Vol. 3, 2004, p. 351.

Swygenhoven, H. Van and J. R. Weertman, “Deformation in nanocrystalline metals”, Materials Today, Vol. 9, No. 5, 2006, p. 24.

Budrovic, Z. et al, “Plastic Deformation with Reversible Peak. Broadening in Nanocrystalline Nickel”, Science, Vol. 309, 2004, p. 273.

Valiev, R. Z. et al, “Paradox of strength and ductility in metals processed by severe plastic deformation”, J. Mater. Res. , Vol. 17, 2002, p. 5.

Wang, Y. M., E. Ma and M. W. Chen, “Enhanced tensile ductility and toughness in nanostructured Cu”, Appl. Phys. Lett., Vol. 80, 2002, p. 2395.

Höppel, H. W., J. May and M. Göken, 2Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding”, Adv. Eng. Mater., Vol. 6, 2004, p. 781.

Youssef, K. M. et al., “Ultrahigh strength and high ductility of bulk nanocrystalline copper”, Appl. Phys. Lett.,Vol. 87, 2005, p. 091.

Budrovic, Z. et al, “Plastic Deformation with Reversible Peak. Broadening in Nanocrystalline Nickel”, Science, Vol. 309, 2004, p. 273.

Jia, Y. et al, “Deformation behavior and plastic instabilities of ultrafine-grained titanium”, Appl. Phys. Lett., Vol. 79, 2001, p. 611.

Swygenhoven, H. Van and J. R. Weertman, “Deformation in nanocrystalline metals”, Materials Today, Vol. 9, No. 5, 2006, p. 24.

Zhao, Y. H. et al, “Simultaneously Increasing the Ductility and Strength of Ultra -Fine - Grained Pure Copper”, Adv. Mater., Vol. 18, 2006, p. 2949.

Koch, C. C., “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals”, Scr. Mater., Vol. 49, 2003, p. 657.

Siegel, R. W., “Nanostructured materials -mind over matter-“, Nanostruct. Mater., Vol. 3, 1993, p.1.

Leslie-Pelecky, Diandra L., “Magnetic Properties of Nanostructured Materials”, Chem. Mater., Vol.8,1996,p. 1770. [112]Masumoto, T.et al., “Characterization of amorphous alloys”, Mater. Sci. Eng., Vol. 23, 1976, p. 141.

Hafeli, Urs O. and Gayle J. Pauer, “In vitro and in vivo toxicity of magnetic microspheres”, J. Magm Mag. Mater., Vol. 194, 1999, p. 76.

Jhunu Ch., Y. and Ch.-J. Chen, “Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications”, Magn Magn. Mater, Vol. 246, 2002, p.382.

Pankhurst, Q. A., Connolly, K Jones and J Dobson,Applications of magnetic nanoparticles in biomedicine. Phys. D:AppI.Phys.36(2003) R167.

Mendoza-Resendez, O. et al, “Microstructural Characterization of ellipsoidal iron metal nanparticles”, Nanotechnology , Vol. 15, 2004, p. 5254.

Croat, J. J., et al., “High‐energy product Nd‐Fe‐B permanent magnets”, J. Appl. Phys., Vol. 55, 1984, p. 2078.

Yoshizawa, Y., Oguma, S., and Yamauchi, K., “New Fe-based soft magnetic alloys composed of ultrafine grain structure”, J. Appl. Phys., Vol. 64, 1988, p. 6044.

Duwez, P. and S. C. H. Lin, “Amorphous Ferromagnetic Phase in Iron ‐ Carbon ‐Phosphorus Alloys” ,J. Appl. Phys., Vol. 38, 1967, p. 4096.

Leslie-Pelecky, Diandra L., “Magnetic Properties of Nanostructured Materials”, Chem. Mater., Vol.8,1996,p. 1770.

Masashige, Shinkai, et al., “Intracellular hyperthermia for cancer using magnetite cationic liposomes” , Journal of Magnetism and Magnetic Materials, Vol. 194, 1999, p.176.

Inohue, A., A. Takeuchi and B. Seheng, “Formation and Functional Properties of Fe – Based Bulk Glasssy Alloys”, Mat. Trans., Vol. 42, No. 6, 2001, p. 970.

Inohue, A., A. Takeuchi and B. Seheng, “Formation and Functional Properties of Fe – Based Bulk Glasssy Alloys”, Mat. Trans., Vol. 42, No. 6, 2001, p. 970

Dorantes-Dávila, J. and G. M. Pastor, “Magnetic properties of transition – metal nanoalloys”, Nanoalloys: from fundamentals to emergent applications, Florent Calvo (ed.), Elsevier, Amsterdam, 2013, p. 247

Fujita, T., K. Ohshima and N. Wada, “Particle Size and Superconducting Transition Temperature of Aluminum Fine Particles”, J. Phys Soc. Japan, Vol. 27, 1969, p. 1459

Fujita, T., K. Ohshima and K. Kurroishi, “Temperature dependence of electrical conductivity in films of fine particles”, J. Pys. Soc. Japan, Vol. 40, No. 1, 1976, p. 90.

Ramasamy S. and B. Purniah, “Electrical properties of nanostructured materials”, PINSA, Vol. 67, No. 1, 2001, p. 85.

Porrati, F. et al., “Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition”,J. Appl. Phys., Vol. 113, 2013, p . 053707

Pantoya, M. L. and J. J. Granier, “Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites”, Propellants, Explosives, Pyrotechnics, Vol. 30, No. 1, 2005, p. 53.

Giljohann, David A. et al, “Gold Nanoparticles for Biology and Medicine”, Angewandte Chemie International Edition, Vol, 49, No 19, 2010, p. 3280.

Palacios, J. J. et al., “A first-principles approach to electrical transport in atomic-scale nanostructures”, Phys. Rev. B, Vol. 66, 2002, p. 035322.

Trudeau, M., and Ying, J. J., “Nanocrystalline Materials in Catalysis and Electrocatalysis: Structure Tailoring and Surface Reactivity”, NanoStruct. Mater., Vol. 7, 1996, p. 245.

Klabunde, K. J., Li, Y. X., and Khaleel, A., “Catalysis and Surface Chemistry: Metal Clusters/Nanoscale Particles”, Nanophase Materials Synthesis-Properties-Applications, G. C. Hadjipanayis and R. W. Siegel (eds.), NATO ASI Series, Kluwer Academic Publ., Amsterdam, Vol. 260, 1994, p. 757.

Davis, S. C., and Klabunde, K. J., “Unsupported Small Metal Particles: Preparation, Reactivity, and Characterization”, Chem. Rev., Vol 82, 1982, p. 153.

Zhao, J., Huggins, F. E., Feng, Z., Lu, F., Shah, N., and Huffman, G. P., Structure of a Nanophase Iron Oxide Catalyst, J. Catal., 143:499–509 (1993).

Feng, Z., Zhao, J., Huggins, F. E., and Huffman, G. P., Agglomeration and Phase Transition of a Nanophase Iron Oxide Catalyst, J. Catal.,143:510–519 (1993). W

Zhdanov, V. P., and Kasemo, B., “Kinetics of Rapid Reaction on Nanometer Catalyst Particles”, Phys. Rev. B, Vol. 55, 1997, p. 4105.

Peuckert, M., et al., “Oxygen Reduction on Small Supported Platinum Particles”, J. Electrochem. Soc., Vol. 133, 1986, p. 944.

Suramwar, N. V. , S. R. Thakare and N.T. Khaty, Application of nanomaterials as a catalyst in organic synthesis”, International Journal of Knowledge Engineering, Vol.3, No. 1, 2012, p. 98.

Geng, J. and B. F. Johnson, “Nickerl and Ruthenium Nanoparticles as Catalysts for Growth of Carbon Nanotubes and Nanohorns”, Nanotechnology in Catalysis, B. Zhou, S. Hermmans and G. A. Somorjai (eds.), American Chemical Society, N. Y., 2002, Vol. 1, p. 159.

Trudeau, Michel L., “Nanostructured Materials for Gas Reactive Applications”, Nanostructured Materials. Processing, Properties and Potential Applications, Carl C. Koch (ed.), Noyes Publications, Norwich, N. Y., 2002, p. 301.

Thomas, S. C., X. Ren and S. Gottesfeld “Direct Methanol Fuel Cells: Catalyst Ionomer Content and Anode Performance”, Proton Conducting Membrane Fuel Cells (Second International Symposium), S. Gottesfeld, T. F. Fuller and G. Halpert (eds.), Proceedings, The Electrochemical Society, Pennington, New Jersey, 1999. Vol. 98-27, p. 267

Schlapbach L, Zuttel A., “Hydrogen-storage materials for mobile applications”, Nature Vol. 414 2001, p. 353.

Berubé, V. et al, “Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review”, Int. J. Energy Res., Vol. 31, 2007, p. 637.

Khan,N. A. et al, “Novel catalytic properties of bimetallic surface nanostructures”, Nanotechnology in Catalysis, B. Zhou, S. Hermmans and G. A. Somorjai (eds.), amercian Chemical Society, N. Y., 2002, Vol. 1, p. 17.

Weissmüller, J., “Thermodynamics of Nanocrystalline Solids”, Nanocrystalline Metals and Oxides, P. Kanuth and J. Schoonman (eds.), Kluwer, Boston, 2002, p. 1.

Färber, B. et al., “Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP)”, Acta Materialia, Vol. 48, No.3, 2000, p. 789.

Beke, D. L., C. Cserháti, and I. A. Szabó, “Segregation inhibited grain coarsening in nanocrystalline alloys”, J. Appl. Phys., Vol. 95, 2004, p. 4996

Murr, L. E., Interface Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975, p. 130.

Kirchheim, R., “ Grain coarsening inhibited by solute segregation”, Acta Mater., Vol. 50, 2002, p. 413. Si fuera possible reducer

Liu, Feng and Reiner Kirchheim, “Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation”, Journal of Crystal Growth, Vol. 264, 2004, p. 385.

Tongjai Chookajorn, T., Heather A. Murdoch and Christopher A. Schuh, “Design of Stable Nanocrystalline Alloys “, Science, Vol. 24, 2012, p. 951.

Bönnemann, H. and K.S. Nagabhushana, “Advantageous Fuel Cell Catalysts from Colloidal Nanometals”, Journal of New Materials for Electrochemical Systems, Vol. 7, 2004, p. 93.

Publicado
2015-05-27
Cómo citar
Valencia Giraldo A. (2015). LOS NANOMETALES. Revista Colombiana De Materiales, (6), 1-32. Recuperado a partir de https://revistas.udea.edu.co/index.php/materiales/article/view/22872
Sección
Artículo destacado