La madera como un nuevo material sostenible

Autores/as

  • Asdrúbal Valencia Giraldo Universidad de Antioquia

Palabras clave:

madera, tratamiento térmico de la madera, compuestos madera-polímero, materiales funcionales, nanotecnología, estructuras jerárquicas

Resumen


Ante la necesidad de materiales sostenibles la madera se ha encontrado que ofrece un sinnúmero de posibilidades, como material estructural y como material funcional. Esto se ha logrado con tratamientos térmicos, con la fabricación de compuestos, como los madera-polímero y con la aplicación de la nanotecnología. Los resultados han sido materiales con extraordinarias propiedades mecánicas y funcionales, que los hacen aptos para múltiples aplicaciones. El camino de la investigación y aplicación industrial apenas empieza y este artículo pretende hacer un llamado a nuestros ingenieros de materiales para que se ocupen de este amplio campo de posibilidades.

|Resumen
= 229 veces | PDF
= 484 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Asdrúbal Valencia Giraldo, Universidad de Antioquia

Profesor Emérito, Universidad de Antioquia, Medellín, Colombia.

Citas

Clancy, Gunila, Guiding the development of wood-based materials towards more sustainable products, Thesis for the degree of Licentiate in Philosophy, Chalmers University of Technology, Göteborg, Sweden, 2012.

Mayo, J. and Hans- Erik Blomgren, “Wood: the concrete of the 21st century”, (Re)connect Seattle, Seattle, 2018.

Winandy, Jerrold E., “Wood properties”, Encyclopedia of Agricultural Science, Charles J. Artzen (ed.), Academic Press, Orlando, FL, Vol. 4, p. 554, October 1994.

Song, Jianwei et al., “Processing bulk natural wood into a high-performance structural material”, Nature, Vol. 554, pp. 224, February, 2018.

Berglud, Lars A. and Ingo Burgert, “Bioinspired Wood Nanotechnology for Functional Materials”, Advanced Materials, Vol. 30, pp. 17042285, May 10, 2018.

Li, Yuanyuan et. al., “Luminiscente, Transparent Wood”, Advanced Optical Materials, Vol. 5, No. 1, 1600834, January 4, 2018.

PARTES DE LA MADERA, [Online], Available: https://tailaketa.wordpress.com/2014/09/24/partes-de-la-madera/, [Accessed: 25-Sep-2019].

PARTES DEL TRONCO, [Online], Available: http://luismibarrios.blogspot.com/p/partes-del-tronco-del-arbol.html, [Accessed: 25-Sep-2019].

Hill, Callum, Wood modification. Chemical, Thermal ad Other Processes, John Wiley, Chichester, pp. 20, 2006.

Militz, Holger and Stig Lander, “Challenges in wood modification technology on the way to practical applications”, Wood Materials Science and Technology, Vol. 4, Nos. 1 - 2, pp. 23, 2014.

Dost, William A.,Wood Detailing for Performance, GRDA Publications, Pensacola, 1990.

Tiemann, H. D., “The effect of different methods of drying on the strength of wood”, Lumber World Review, Vol. 28, No. 7, pp. 19, 1915.

Kollman, F., Technologie des Holzes und der Holzwerkstoffe, Spinger Verlag, Berlin, 1936.

Morsig, N., “Densification of wood. The influence of hygrothermal treatment on compression o beech perpendicular to the grain”, Institute for Bœrende Konstruktioner og Materialer, Department of structural engineering and materials, Technical University of Denmark, Copenhagen, pp. 79, 2000.

Stamm, A. J. and Hansen, L. A., “Minimizing wood shrinkage and swelling. Effect of heating in various gases”, Industrial and Engineering Chemistry, Vol. 29, No. 7, pp. 831, 1937.

Seborg, R., R. Millet and A. Stamm, “Heat-stabilized compressed wood. Saypack”, Mech. Eng., Vol. 67, pp. 25, 1945.

Seborg, R., H. Tarkow and A. Stamm, “Effect of heat upon de dimensional stabilization of wood”, J. For. Product Res. Soc., Vol., No. 9, pp. 59, 1953.

Kollmann F. and Schneider, A., “On the sorption behavior of heat stabilized wood”, Holz Roh – Werkst, Vol. 21, No. 3, pp. 461, 1963.

Kollmann, F. and Fengel, D., “Changes in the chemical composition of wood by heat treatment”, Holz Roh – Werkst, Vol. 12, pp. 77, 1965.

Noack, N., “Über die Heisswasserbehandlung von Rotbuchenholtzim Temperatubereich von 100 bis 180o C”, Holz Holzverwer, Vol. 21, No. 1, pp. 118, 1969.

Fengel, D.,“On the changes of the wood and its components whithin the temperature range up to 200o C – Part 1”, Holz Roh – Werkst, Vol. 24, pp. 9, 1966.

Fengel, D.,“On the changes of the wood and its components whithin the temperature range up to 200o C – Part 2”, Holz Roh – Werkst, Vol. 24, pp. 98, 1966.

D ́Jakonov, K. and Koneplava, T., “Moisture absortion by Scots Pine wood after heat treatment, Lsn Z”, Archangel ́sk, Vol. 10, No. 1, 1967.

Nikolov, S. and Encev, E., “Effect of the heat treatment on the sorption dynamics of beech wood”, Nauc. Trud. Lesoteh., Vol. 14, No. 3, p. 71,1967.

Burmester, A., “Investigation on the dimension stabilization of Wood”, Bundesalstalt für Materialprüfung, Berlin- Dalhen, pp. 50, 1973.

Burmester, A., Zur Dimensionstabililisierung von Holz”, Holz Roh – Werkst, Vol. 33, pp. 333, 1975.

Rusche, H., “Thermal degradation of Wood at temperatures up to 200 ºC – Part I”, Holz Roh – Werkst, Vol. 31, pp. 273, 1973.

Rusche, H., “Thermal degradation of Wood at temperatures up to 200 ºC – Part I”, Holz Roh – Werkst, Vol. 31, pp. 307, 1973.

Giebeler, E, “Dimensionsstabilisierung von Holz durch eine Feuchte Wärme Druck-Behandlung”, Holz Roh – Werkst, Vol. 41, pp. 87, 1983.

Hillis, H., “High temperatura and chemical effects on Wood stabili+ty – Part. I. General considerations”, Wood Sci. Technol., Vol. 18, pp. 281, 1984.

Elder, T., “The pyrolysis of wood”, Wood and Cellulosic Chemistry, Hon, D.N.S. and Shiraishi, N. (eds.), Marcel Dekker, New York, pp. 665, 1991.

Md. Tariqur Rabbani Bhuiyan, N. Hirai and N. Sobue, “Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions”, J. Wood Sci., Vol. 46, pp. 431, 2000.

Viitanen, H. et al., “The effect of heat treatment on the properties of spruce.Document No. IRG/WP 94-40032, International Research Group on Wood Preservation, Stockholm, 4 pp, 1994.

Tjeerdsma, B. et al.H., “Characterization of thermally modified wood: molecular reasons for wood performance improvement”, Holz Roh-Werkst, Vol. 56, pp. 149, 1998.

Dirol, D., and Guyonnet, R. “Durability by rectification process”, International Research Group Wood Pre, Section 4-Processes, Nº IRG/WP 93-40015, Stockholm, 1993.

Sailer, M. et al., “Improved resistance of Scots pine and spruce by application of an oil-heat treatment”, International Research Group Wood Pre, Section 4-Processes, Nº IRG/WP 00-40162, Stockholm, 2000.

Kamdem, D. P., A. Pizzi and A. Jermannaud, “Durability of heat-treated wood”, Holz als Roh und Werkstoff, Vol. 60, pp.1, 2002.

Pétrissans M., Gérardin P., Elbakali, D., Serraj, M., “Wettability of heat treated wood”, Holzforschung, Vol. 57, pp. 301, 2003.

Gérardin, P. et al., “Evolution of wood surface free energy after heat treatment”, Polymer Degradation and Stability, Vol. 92, pp. 653, 2007.

Hakkou, M. et al, “Investigation of wood wettability changes during heat treatment on the basis of chemical analysis”, Polymer Degradation and Stability, Vol. 89, pp. 1, 2005.

Hakkou, M. et al, “Investigations of the reasons for fungal durability of heat-treated beech wood”, Polymer Degradation and Stability, Vol. 91, pp. 396, 2006.

Nguila Inari, G. et al., “Evidence of char formation during wood heat treatment by mild pyrolysis”, Polymer Degradation and Stability, Vol. 92, pp. 997, 2007.

Esteves, B. M., Domingos, I. J., and Pereira, H. M., “Pine wood modification by heat treatment in air”, BioRes., Vol. 3, No. 1, pp. 142, 2008.

Vernois, Michel, Heat treatment of wood in France –state of the art, Centre Technique du Bois et de l’Ameublement, Paris, pp. 3, 2007.

Dos Santos, J. A., “Mechanical behaviour of Eucalyptus Wood modified by heat”, Wood Science and Technology, Vol. 34, pp. 39, March 2000.

Jun Li Shi, D. Kocaefe and J. Zhang, “Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process”, Holz Roh Werkst, Vol. 65, pp. 258, 2007.

Korkut, S., T. Dundar and M. Akgüi, “The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood”, Bioresource Technology, Vol, 99, 2008.

Song, J. et al., “Processing bulk natural wood into a high performance structural material”, Nature, Vol. 554, pp. 224, February, 2018.

Matuana, L. M. and P. A. Heiden, “Wood Composites”, Encyclopedia of Polymer Science and Technology, Vol 12, pp. 521, John Wiley, New York, 2004.

Ariffin, N. A., et al., “A comparative study of physical and mechanical properties of wood plastic composite produced from different agriculture residues”, Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, March 6- 8, pp. 29-77, 2018.

Patterson, J., “New opportunities with wood – flour – foamed PVC”, J. Vinyl Additive Technol., Vol.7, No. 3, pp. 138, 2001.

Asim, M. et al., “Review on pineapple leaves fiber and its composites”, International Journal of Polymer Science, pp. 1, 2015.

Fowler, P. A. et al., “Review biocomposites: technology, environmental credentials and market forces”, Journal of the Science of Food and Agriculture, Vol. 86, No. 2, pp.17-81, 2006.

Valles- Rosales, D. J. et al., “Analysis of the mechanical properties of wood-plastic composites based on agriculture chili paper waste”, Maderas. Ciencia y Tecnología, Vol., 18 No. 1, pp. 43, 2016.

Arbintarso, E. S. et al., “Simulation and Failure Analysis of Car Bumper Made of Pineapple Leaf Fiber Reinforced Composite”, IOP Conference Series: Materials Science and Engineering, 306, 2018.

Rowell, R.M., “Acetylation of wood: A journey from analytical technique to commercial reality”, Forest Products Journal, Vol. 56, No. 9, pp. 4, 2006.

Segerholm, K., Characteristics of wood plastic composites based on modified wood. Moisture properties, biological resistance and micromorphology, Doctoral Thesis, KTH Building Materials Technology, Stockholm, pp. 35, 2012.

Valencia G., A. “Los biomateriales y la Ingeniería”, Primer Congreso Nacional de Biomateriales, Universidad de Antioquia, Medellín, pp. 1, septiembre, 2008.

Stamm, A. J. and Millett, M.A., "The Internal Surface of Cellulosic Materials", J. Phys. Chem., Vol. 45, pp. 43, 1941.

Burgert, I. et al., “Bio-inspired functional wood-based materials – hybrids and replicates”, Int. Mater. Rev., Vol. 60, p. 431, 2015.

Jin, H. et al, “Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil”, Langmuir, Vol.27, No. 5, pp. 19-30, 2011.

Tingaut, P., T. Zimmermann, G. Sebe, “Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials”, J. Mater. Chem., Vol. 22, No. 38, pp. 20-105, 2012.

Toivonen, M. S. et al., “Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan”, Biomacromolecules, Vol. 16, No. 3, pp. 10-62, 2015.

Zhou, P. et al, “Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals”, Macromolecules, Vol.44, No. 11, p. 22-44, 2011.

Norgren, M. and H., “Edlund, Lignin: Recent advances and emerging applications”, Curr. Opin. Colloid Interface Sci., Vol.19, No. 5, pp. 4-9, 2014.

Zhang, Z. et al. “Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water”, Chem. Mater., Vol. 26, No. 8, pp. 26-59, 2014.

Bamber, R. K., “Heartwood, its function and formation”, Wood Sci. Technol., Vol. 10, No. 1, pp.1, 19-76.

Hillis, W. E., “Chemical aspects of heartwood formation”, Wood Sci. Technol. Vol. 2, No. 4, pp. 241, 19-68.

Magel, E. A. et al., “Formation of heartwood substances in the stem of Robinia pseudoacacia. L. I. Distribution of phenylalanine ammonium lyase and chalcone synthase across the trunk”, Trees - Struct. Funct., Vol.5, No. 4, pp. 2-3, 1991.

Taylor, A. M., B. L. Gartner and J. J. Morrell, “Heartwood formation and natural durability -A review”, Wood Fiber Sci., Vol. 34, No. 4,p. 5-87, 2002.

Speck, T. and I. Burgert, “Plant Stems: Functional Design and Mechanics”, Annu. Rev., Vol. 41, pp. 1-69, 2011.

Speck, T., N. Rowe, and H.-C. Spatz, “Pflanzliche Achsen- Hochkomplexe Verbundstrukturen mit erstaunlichen mechanischen Eigenschaften”, Akad. d. Wiss. und d. Lit., Mainz, Fischer Verlag, Vol. 10, Stuttgart, pp. 1-10, 1996.

Deveci, I. et al., “Effect of SiO2 and Al2O3 treatment on thermal behavior of oriental beech wood”, Wood Research, Vol. 63, No. 4, pp. 5-73, 2018.

Bak, M., F. Molnár and R. Nemeth, “Improvement of dimensional stability of wood by silica nanoparticles”, Wood Material Science & Engineering, Vol. 14, No 1, pp. 4-8, 2019.

Papadoupulos, A. N., “Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review”, Nanomaterials, Vol. 9, No. 4, pp. 6-7, 2019.

Srinivas, K. and K. K. Pandey, “Enhancing Photostability of Wood Coatings Using Titanium Dioxide”, Wood is Good. Current Trends and Future Prospects in Wood Utilization, Pandey K. K. et al. (eds.), Springer, Singapore, pp. 2-51, 2017.

Fink, S., “Transparent Wood – A New Approach in the Functional Study of Wood Structure”, Holzforschung, Vol. 46, No. 5, pp. 403, 1992.

Li, Y. et al., “Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance”,Biomacromolecules, Vol. 17, No. 4, pp. 13-58, 2016.

Zhu, M. W. et al., “Highly Anisotropic, Highly Transparent Wood Composites”, Adv. Mater., Vol. 28, No. 26, pp. 51-81, 2016.

Li, T. et al, “Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation”, Adv. Energy Mater., Vol.6, pp. 16-22, 2016.

Zhu, M. W. et al., “Transparent and haze wood composites for highly efficient broadband light management in solar cells”, Nano Energy, Vol. 26, pp. 3-32, 2016.

Li, Y. Y. et al., “Transparent Wood: Luminescent Transparent Wood”, Adv. Opt. Mater., Vol. 5, pp. 16-34, 2017.

Vasileva, E. et al., “Lasing from organic dye molecules embedded in transparent wood”, Adv. Opt. Mater., Vol. 5, No. 10, pp.17-57, 2017.

Gan, W. T. et al., “Luminescent and transparent wood composites fabricated by PMMA and γ-Fe2O3@YVO4:Eu3+” nanoparticles impregnation, ACS Sustainable Chem. Eng., vol. 5, pp. 3855, 2017.

Gan, W.T. et al., “Transparent magnetic wood composites based on immobilizing Fe3O4nanoparticles into a delignified wood template”,J. Mater. Sci., Vol. 52, No. 6, pp. 21-33, 2017.

Li, Y. et al., “Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance”,Biomacromolecules, Vol. 17, No. 4, pp. 13-58, 2016.

Rekola, Jami, Wood as a model material for medical biomaterials, Thesis for the degree of Dentist, University of Turku, Turku, Finland, 2011.

Liu, J., Wood-derived biomaterials for biomedical applications, Dissertation, Abo Akademi University, Turku, 2016.

Burgert, I. et al, “Biomaterial wood: wood-based and bioinspired materials”, Seconday Xilem Biology, Y. S. Kim, R. Funada and A. P. Singh (eds.), Elsevier, Amsterdam, pp. 259, 2016.

Mittal, N. et al., “Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers”, ACS Nano, Vol. 12, No. 7, pp. 63-78, 2018.

Descargas

Publicado

2019-12-19

Cómo citar

Valencia Giraldo, A. (2019). La madera como un nuevo material sostenible. Revista Colombiana De Materiales, (14), 1–16. Recuperado a partir de https://revistas.udea.edu.co/index.php/materiales/article/view/340836

Número

Sección

Artículos