Las skutteruditas como materiales termoeléctricos

Autores/as

  • Asdrúbal Valencia Giraldo Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.rcm.328004

Palabras clave:

termoelectricidad, materiales termoeléctricos, skutteruditas

Resumen

De acuerdo con los estudios sobre el consumo energético mundial, la presente demanda energética en el mundo será el doble hacia el año 2050 y donde aproximadamente para el año 2017, se calcula un valor de 16 TW. En los tiempos que corren casi el 80% de la energía viene de combustibles fósiles, de los cuales el petróleo representa el 35%, pero sus reservas se van agotando, las nuevas fuentes no son fácilmente accesibles y su extracción es costosa; además, la quema de esos combustibles es un serio problema ambiental. Es decir que a la larga, la situación será insostenible. Para enfrentar esto se tienen diferentes posibilidades como la fusión y la fisión nucleares, la energía solar, la del viento, la del hidrógeno, etc., todo lo cual requiere todavía décadas de investigación y desarrollo, con el fin de lograr una combinación de tecnologías que puedan lograr un verdadero impacto. Entre ellas, está la termoelectricidad, que puede contribuir de manera significativa a la solución de este gran problema.

|Resumen
= 261 veces | PDF
= 528 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Asdrúbal Valencia Giraldo, Universidad de Antioquia

Profesor Emérito, Universidad de Antioquia.

Citas

Hoffert, M. I. et al, “Energy implications of future stabilization of atmospheric CO2content”, Nature, vol. 395,p. 881, 1998.

THERMOELECTRIC ENERGY HARVESTING, [Online], Available:http://www.digikey.com/en/articles/techzone/2011/oct/thermoelectric-energy-harvesting, [Accessed: 25-Abr-2017]

Galperin, Y. M., Introduction to Modern Solid State Physics, Oslo, 2001.

EFECTO SEEBECK Y PELTIER, [Online], Available:http://mindustriales.blogspot.com.co/, [Accessed: 26-Abr-2017]

Tritt, Terry M. and M.A. Subramanian,“Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View”, MRS Bulletin, vol. 31, p. 188, 2006.

Uher, Ctirad, Skkuterudites Progress, College de France, Paris, 2013.

B, Iversen,Bo et al., “Why are Clathrates Good Candidates for Thermoelectric Materials?”, J. Solid State Chemistry, vol. 149, p. 455, 2000.

Triguero Bascuñán, Sonia V., Materiales Moleculares Basados en Calcogenuros Cluster de Metales del Grupo 6 con Especies Electroactivas, Tesis doctoral, Universitat Jaume I, Castellón de la Plana, 2008.

Chung, D. Y. et al., “Complex chalcogenidesas thermoelectric materials: a solid state chemistry approach”, Bulletin of the Korean Chemical Society, vol. 19, p. 1283, 2014.

Wang, Ying C. and Francis J. DiSalvo, “Exploring Complex Chalcogenides for Thermoelectric Applications”, MRS Proceedings, vol. 626, p. Z7.6, 2000.[11] NANOPARTÍCULAS CLUSTERS Y MOLÉCULAS GIGANTES, [Online], Available: http://datateca.unad.edu.co/contenidos/401540/exe/leccin_25_nanopartculas_clusters_y_molculas_gigantes.html, [Accessed: 15-Abr-2017].

Webster, P. J. and K. R. A. Ziebeck, "Heusler Alloys,"In: Landolt-Bernstein New Series Group III, vol. 19, C, H. R. J. Wijn(ed.), Springer, Berlin, 1988.

Vadalá, Miriana, Structural and Magnetic Characterization of Ferromagnet/Insulator Multilayers, Tesis Doctoral, Universidad de Bochum Ruhr, Bochum, p.5, 2008.

Rull-Bravo, M. et al., “Skutteruditesas thermoelectric material: revisited”, RSC Advances, vol. 5, p. 41653, 2015.

Oftedal, I., “Die Kristallstruktur von Skutterudit und Speiskobalt-Chloanthit”, Zeitschrift für Kristallographie, Vol. 66, p. 517, 1928.

Kjekshus, A. and T. Rakke, “Compounds with the Skutterudite type crustal structure. I. onOftedal ́s relation”,Acta Chem. Scand., vol. 28A, p.99, 1974.

Uher, Ctirad, “Skutterudites: Prospective novel thermoelectrics”, Semiconductors and Semimetals, vol. 69, p. 139, 2001.

Fleurial, J. P. et al, “Skutterudites: An Update”, 16th International Conference on Thermoelectrics, Dresden, 1997.

Leithe-Jasper, Andreas et al,“Filled Skutterudites-Physics and Chemistry of Iron Antimonidesof Alkali, Alkaline-Earth, and Rare-Earth Metals”, Selected Research Reports, Bamberger Centrums für Empirische Studien, p. 95, 2008.

Kuznetsov, V. L., Kuznetsova, L. A. and Rowe, D. M., “Effect of partial void filling on the transport properties of NdxCo4Sb12skutterudites”, J. Phys.: Condens. Matter, vol. 15, p. 5035, 2003.

Nolas, G. S., Cohn, J. L. and Slack, G. A., “Effect of partial void filling on the lattice thermal conductivity of skutteruditas”, Phys. Rev. B, vol. 58, p. 164,1998.

Nolas, G. S. et al., “High figure of merit in partially filled ytterbium skutterudite materials”,Appl. Phys. Lett., vol. 77, p. 1855, 2000.

Morelli, D. T. et al., “Cerium filling and doping of cobalt triantimonide”, Phys. Rev. B, vol. 56, p. 7376, 1997.

Lamberton, G. A.et al., “High Figure of Merit in Eu-Filled CoSb3-Based Skutterudites”, Appl. Phys. Lett., vol. 80, p. 598, 2002.

Chen, L. D. et al., “Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12BayCo4Sb12”, Appl. Phys., vol. 90, p. 1864, 2001.

Puyet, M. et al, “High temperature transport properties of partially filled CaxCo4Sb12 skutterudites”, J. Appl. Phys., vol.95, p. 4852,2004.

Zhao, X. Y. et al., “Synthesis of YbyCo4Sb12/Yb2O3YbyCo4Sb12∕Yb2O3composites and their thermoelectric properties”, J. Appl. Phys., vol. 99, p. 053711, 2006.

Pei, Y. Z. et al., “Synthesis and thermoelectric properties of KyCo4Sb12”, Appl. Phys. Lett.,vol. 89, p. 221107, 2006.

Pei, Y. Z. et al., “Improving thermoelectric performance of caged compounds through light-element filling”, Appl. Phys. Lett., vol. 95, p. 042101,2009.

Keppens, V. etal., “Localized vibrational modes in metallic solids”, Nature, vol. 395,p. 876.1998.

Hermann, R. P. et al, “Einstein Oscillators in Thallium Filled Antimony Skutterudites”,J. Phys. Rev. Lett., vol. 90, p. 135505,2003.

Bai, S. Q. et al.,“Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12”,ActaMater, vol. 57, p. 3135, 2009.

Salvador, J. R. et al., Yan. “Double-Filled Skutterudites of the Type YbxCayCo4Sb12: Synthesis and Properties”, J. Appl. Phys., vol. 107, p. 043705, 2010.

Zhao, W. Y. et al., “Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler”, J. Am. Chem. Soc., vol. 131, p.3713, 2009.

Li, H. et al., “High Performance InxCeyCo4Sb12thermoelectric materials with in situ forming nanostructured InSb phase”, Appl. Phys. Lett., vol. 94, p.102114,2009.

Shi, Xun et al, “Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit, through Separately Optimizing Electrical and Thermal Transports”, J. Am. Chem.Soc., vol. 133, p. 7837, 2011.

Slack, G. A.&Tsoukala, V. G.,“Some properties of semiconducting IrSb3”, J. Appl. Phys., vol.76, p.1665,1994.

Harnwunggmoung, A. et al., “High-temperature thermoelectric properties of thallium-filled skutteruditas”, Appl. Phys.Lett., vol. 96, p. 202107, 2010.

Qiu, Y. et al., “Charge-compensated compound defect sin Ga-containing thermoelectric skutterudites”, Adv. Funct. Mater., vol.23, p. 3194, 2013.

Tang,Y. et al., “Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites”, Energy Environ. Sci., vol.7, p. 812, 2014.

Yang et al., “Dual-frequency resonant phonon scattering in BaxRyCo4Sb12(R = La, Ce, and Sr), Appl.Phys. Lett., vol. 90, p. 192111, 2007.

Shi, X.et al., “Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports”, J. Am. Chem. Soc., vol. 133, p. 7837, 2011.

Kurosaki, K. et al., “Enhancement of thermoelectric efficiency of CoSb3-based skutteruditas by double filling with K and Tl”, Frontiers in Chemistry, vol. 2, p. 1,2014.

Pei,Y. Z., et al., “Synthesis and thermoelectric properties of KyCo4Sb12, Appl. Phys. Lett., Vol. 89, p. 221107, 2006.

Harnwunggmoung, A. et al., “High-temperature thermoelectric properties of thallium-filled skutteruditas”, Appl. Phys.Lett., vol. 96, p. 202108, 2010.

Annual Energy Review, Energy Information Administration, Washington, 2014.

Hendricks, T. and W.T. Choate, Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery, Industrial Technologies Program, U.S. Department of Energy, Washington, 2006.

Fleurial, Jean-Pierre, “Thermoelectric Power generation materials: Technology and application opportunities”, JOM, vol. 61, No. 4, p. 81,2009.

Jänsch, D., Thermoelektrik: Eine Chance für die Automobilindustrie, Expert Verlag, Renningen, p. 124.p. 12, 2008.

Salzgeber, K. et al., “Skutterudites: Thermoelectric Materials for Automotive Applications?”J. Electron. Mat. , vol. 39, No. 9, p. 2074,2010.

Yang, J., “Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry”,24thInternational Conference on Thermoelectrics, Clemson, 2005.

F. Stabler, “Automotive applications of High Efficiency Thermoelectrics,” DARPA/ONR Program Review and DOE High Efficiency Thermoelectric Workshop, San Diego, CA, March 24-27, 2002.

LaGrandeur,J. et al., “Automotive Waste Heat Conversion to Electric Power using Skutterudite, TAGS, PbTe and BiTe, International Conference on Thermoelectrics,p. 343, 2006.

Hongxia, Xi, Lingai Luo and Gilles Fraisse, “Development and applications of solar-based thermoelectric technologies”, Renewable and Sustainable Energy Reviews, vol. 11, p. 923, 2007.

Jangonda, Chetan et al., “Review of Various Application of Thermoelectric Module”, Intl. J. Innovative Research in Science, Engineering and Technology, Vol. 5, No. 3, 2016, p. 3393.

Gharat, Vinay et al., “Design and Construction of Solar Operated Thermo-Electric Heating and Cooling System”, International Journal of Emerging Technology and Advanced Engineering, vol. 6, no.3,p. 115,2016.

Zhou, D. et al,“Review on thermal energy storage with phase change materials (PCMs) in building applications”, Applied Energy, vol. 92, p. 593, 2012.

Sharma, Atul et al. “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews, vol. 13, p. 318, 2009.

Ma, Xiaoli, Investigation of Novel Thermoelectric Refrigeration Systems,PhD thesis, University of Nottingham, Nottingham, 2004.

Descargas

Publicado

2017-06-05

Cómo citar

Valencia Giraldo, A. (2017). Las skutteruditas como materiales termoeléctricos. Revista Colombiana De Materiales, (10), 56–76. https://doi.org/10.17533/udea.rcm.328004

Número

Sección

Artículos