CHARACTERIZATION OF ZnO NANOFILMS DEPOSITED BY CBD-AμW

Authors

  • Joel Díaz Reyes Meritorious Autonomous University of Puebla
  • Javier Martínez Juárez Instituto Politécnico Nacional
  • David Hernández de la Luz Meritorious Autonomous University of Puebla

DOI:

https://doi.org/10.17533/udea.rcm.19371

Keywords:

ZnO, Wide bandgap Semiconductor, Chemical bath deposition, X-Ray difraction

Abstract

The physical properties of ZnO nanofilms are studied as a function of the urea concentration in the growth solution. ZnO is grown by Chemical Bath Deposition technique activated by microwaves (CBD-AμW). The chemical stoichiometry was determined by energy dispersive spectroscopy (EDS) measurements on the ZnO nanofilms. By X-rays scattering is obtained a polycrystalline hexagonal wurtzite type structure of grown ZnO films. By Raman spectroscopy is confirmed the wurtzite type structure of ZnO films and their Raman spectra show 4 main peaks at 444, 338, 104 and 78 cm-1 that correspond to the modes E2high, (E2high - E2low), E2low, which are associated to the oxygen and zinc sublattices and an unidentified band.

|Abstract
= 115 veces | PDF (ESPAÑOL (ESPAÑA))
= 91 veces|

Downloads

Download data is not yet available.

Author Biographies

Joel Díaz Reyes, Meritorious Autonomous University of Puebla

Ph. D., Meritorious Autonomous University of Puebla, Puebla, Mexico

Javier Martínez Juárez, Instituto Politécnico Nacional

Ph. D., CIBA, Instituto Politécnico Nacional. Tepetitla, Tlaxcala, Mexico

David Hernández de la Luz, Meritorious Autonomous University of Puebla

Ph. D., Meritorious Autonomous University of Puebla, Puebla, Mexico

References

Nomura, K., Kamiya, T., Ohta, H., Ueda, K., Hirano, M., Hosono, H., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystallineInGaO3(ZnO)5films”,AppliedPhysicsLetters,Vol.85,No.11,pages1993-1995,2004.

Hao, X. T., Tan, L.W., Ong, K. S., Zhu, F., “High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications”, Journal of Crystal Growth, Vol. 287, No. 1, pages 44-47, 2006.

Ellmer, K., “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties”, Journal of Physics D: Applied Physics, Vol. 33, pages R17.-R32, 2000.

Jagadish, C., Zinc Oxide Bulk, Thin Films and Nanostructures, First edition, Ed. Elsevier. England. 2006.

Calleja, J. M., Cardona, M., “Resonant Raman scattering in ZnO”, Physical Review B, Vol. 16, No. 8, pages 3753-3761, 1977.

Cuscó, R., Alarcón-Lladó, E., Ibáñez, J., Artús, J., Jiménez, J., Wang, B., Callahan, M. J., “Temperature dependence of Raman scattering in ZnO”, Physical Review B, Vol. 75, pages 165202-165202-11, 2007.

Serrano, J., Romero, A. H., Manjón, F. J., Lauck, R., Cardona, M., Rubio, M. A., “Pressure dependence of the lattice dynamics of ZnO: An ab initio approach”, Physical Review B, Vol. 69. pages 094306-1- 094306-14, 2004.

Weinstein, B. A., “Pressure dependent optical phonon anharmonicity in GaP”, Solid State Communications, Vol. 20, No. 10, pages 999-1003, 1976. 9.Serrano, J., Manjón, F. J., Romero, A. H., Widulle, F., Lauck, R., Cardona, M., “Dispersive Phonon Linewidths: The E2 Phonons of ZnO”, Physical Review Letters, Vol. 90, No. 5, pages 055510-1- 055510-4, 2003.

Published

2014-05-19

How to Cite

Díaz Reyes, J., Martínez Juárez, J., & Hernández de la Luz, D. (2014). CHARACTERIZATION OF ZnO NANOFILMS DEPOSITED BY CBD-AμW. Revista Colombiana De Materiales, (5), 103–110. https://doi.org/10.17533/udea.rcm.19371

Issue

Section

Artículos