Bioactive glasses: backgroung, trends and prospects in Colombia and the world

Authors

  • Oscar Iván Rojas Giraldo University of Antioquia

DOI:

https://doi.org/10.17533/udea.rcm.326493

Keywords:

biomaterials, bioactive glasses, scaffold, porous spheres

Abstract

Market of bone implants has sought to position bioactive glasses as an excellent alternative for recovery, repair or replacement of bone tissues, since they have a range of biological properties that make them attractive to the faster and more effective restoration of patients with orthopedic problems. However, from the development of bioactive glasses, hundreds of researches have focused their efforts on improving the mechanical properties of these ones to increase their applicability in tissue replacement. For that purpose, different strategies have been devised including compositional changes, ionic substitutions, crystallinity changes and as well as the union of different materials. Despite of the many efforts, it hasn’t yet been possible to satisfy the needs in mechanical properties, so the morphological changes in bioactive glasses have raised a prospective in the resolution of shortcoming that have them.

Even though a high potential has been seen for bioactive glasses at global level and different efforts are made to adapt them to the needs in order to improve the quality of life people with bone diseases, in Colombia this material hasn’t aroused a high interest, leading to the use of traditional materials that in many cases aren’t the best alternative to provide affected patients a faster and lasting recovery.

|Abstract
= 1839 veces | PDF (ESPAÑOL (ESPAÑA))
= 595 veces|

Downloads

Download data is not yet available.

Author Biography

Oscar Iván Rojas Giraldo, University of Antioquia

Materials Engineer, Doctoral Student in Materials Engineering, Researcher at the Pyrometallurgical and Materials Research Group (GIPIMME), University of Antioquia, Medellín, Colombia.

References

Binyamin, G., Shafi, B. M., Mery, C. M., “Biomaterials: a primer for surgeons”, Seminars in Pediatric Surgery, vol. 15, no. 4, pp. 276–283, 2006.

Chen, W. C., Kung, J. C., Chen, C. H., et al., “Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion”, Applied Surface Science, vol. 283, pp. 833–842, 2013.

Shih, C. J., Lu, P. S., Hsieh, C. H., et al., “Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses”, Applied Surface Science, vol. 314, pp. 967–972, 2014.

Yan, X., Yu, C., Zhou, X., et al., “Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities”, Angewandte Chemie International Edition, vol. 43, no. 44, pp. 5980–5984, 2004.

Monsalve, M., Síntesis y Deposición de Biovidrios Pertenecientes al Sistema 31SiO2-11P2O5-(58-X)CaO-XMgO Sobre Aleaciones de Titanio y Acero AISI 316L Mediante Proyección Térmica, Universidad de Antioquia-Universidad de Limoges, 2014.

Introduction, I.-, Les, I.-, Le, B. I.-, et al., “Utilisation des verres bioactifs dans les dispositifs médicaux implantables ,” pp. 1–20.

Cao, W., Hench, L. L., “Bioactive materials”, Ceramics International, vol. 22, no. 6, pp. 493–507, 1996.

Industry Experts, “Biomaterials: A global market overview”, Industry Experts, pp. 1–290, 2011.

César Cácua Ortiz, COLOMBIA DESARROLLA PRÓTESIS BIOCOMPATIBLES - ARCHIVO DIGITAL DE NOTICIAS DE COLOMBIA Y EL MUNDO DESDE 1.990 - ELTIEMPO.COM, 2013, [Online], Available: http://www.eltiempo.com/archivo/documento/CMS-13118475, [Accessed: 29-Aug-2016].

Kokubo, T., Kim, H. M., Kawashita, M., “Novel bioactive materials with different mechanical properties”, Biomaterials, vol. 24, no. 13, pp. 2161–2175, 2003.

Kokubo, T., Ito, S., Huang, Z. T., et al., “Ca,p-rich layer formed on high-strength bioactive Glass-Ceramic A-W.”, J. Biomed. Mater. Res., vol. 24, pp. 331–343, 1990.

Kokubo, T., “Surface chemistry of bioactive glass-ceramics”, Journal of Non-Crystalline Solids, vol. 120, no. 1–3, pp. 138–151, 1990.

Kitsugi, T., Yarnarnuro, T., Kokubot, T., “Analysis of a W Glass-Ceramic surface by micro‐beam X‐ray diffraction,”Journal of Biomedical Materials Research, vol. 24, pp. 259–273, 1990.

Ohtsuki, C., Kushitani, H., Kokubo, T., et al., “Apatite formation on the surface of ceravital-type glass-ceramic in the body”, Journal of Biomedical Materials Research, vol. 25, no. 11, pp. 1363–1370, 1991.

Elieen De Guire, LARRY HENCH—INVENTOR OF BIOGLASS AND CHILDREN’S AUTHOR—DIES AT AGE 77 | THE AMERICAN CERAMIC SOCIETY, 2015, [Online], Available: http://ceramics.org/ceramic-tech-today/larry-hench-inventor-of-bioglass-and-childrens-author-dies-at-age-77, [Accessed: 30-Aug-2016].

García, C., Galliano, P., Ceré, S., “Electrochemical evaluation of resistance to localised corrosion of vitreous coatings containing particles applied on metallic substrates for biomedical applications”, Materials Letters, vol. 57, no. 12, pp. 1810–1814, 2003.

Subjarea, L., “Scopus - analyze search results - bioactive glasses - structural analysis,” p. 2054, 2015.

Peláez, A., Garcia, C., Correa, J. C., et al., “Reliability weibull analysis for structural evaluation of bioactive films obtained by sol-gel process”, Annual Meeting of the International Society for Ceramics in Medicine, vol. 254–256, pp. 431–434, 2004.

García, C., Ceré, S., Durán, A., “Bioactive coatings deposited on titanium alloys”, Journal of Non-Crystalline Solids, vol. 352, no. 32–35, pp. 3488–3495, 2006.

Peláez, A., Pareja, A., García, C. P. P., et al., “Genotoxicity effects of ceramic coatings applied on metallic substrates using single cell gel electrophoresis assay in vitro”, Key Engineering Materials, vol. 286, pp. 593–596, 2005.

García, C., Ceré, S., Durán, A., “Bioactive coatings prepared by sol-gel on stainless steel 316l”, Journal of Non-Crystalline Solids, vol. 348, pp. 218–224, 2004.

Durán, A., Conde, A., Coedo, a. G., et al., “Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices”, Journal of Materials Chemistry, vol. 14, no. 14, p. 2282, 2004.

Zhitomirsky, D., Roether, J. A., Boccaccini, A. R., et al., “Electrophoretic deposition of bioactive glass/polymer composite coatings with and without ha nanoparticle inclusions for biomedical applications”, Journal of Materials Processing Technology, vol. 209, no. 4, pp. 1853–1860, 2009.

Monsalve, M., Ageorges, H., Lopez, E., et al., “Bioactivity and mechanical properties of plasma-sprayed coatings of bioglass powders”, Surface and Coatings Technology, vol. 220, pp. 60–66, 2013.

Monsalve, M., Lopez, E., Ageorges, H., et al., “Bioactivity and mechanical properties of bioactive glass coatings fabricated by flame spraying”, Surface and Coatings Technology, vol. 268, pp. 142–146, 2015.

Correa, R., M. monsalve, López, M. E., et al., “Influencia de los parámetros de deposición en la porosidad y y adherencia de recubrimientos de biovidrios del sistema 31SiO2-11P2O5-51CaO –7MgO elaborados mediante proyección térmica por combustión oxiacetilénica,” Revista Lationamericana de Metalurgia y Materiales, vol. 33, no. 1, pp. 92-99, 2010.

Ciro, E., Zapata, N., López, M. E., “Elaboración de un cemento óseo de fosfato de calcio con una adición de biovidrio”, Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 54, no. 2, pp. 84–92, 2015.

Company Colgate-Palmolive, COMPOSICIONES ORALES QUE CONTIENEN COMPUESTOS DE POLIGUANIDINO Y MÉTODOS DE PREPARACIÓN Y USO DE LAS MISMAS, Colombia, 2011.

Kim, H.-M., Miyaji, F., Kokubot, T., et al., “Bioactivity of M2O-TiO2-SiO2 (m=na, k) glasses: An in vitro evaluation”, Ceramic Society of Japan, vol. 69, pp. 2387–94, 1996.

Uchida, M., Kim, H. M., Kokubo, T., et al., “Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions”, Journal of the American Ceramic Society, vol. 84, no. 9, pp. 2041–2044, 2001.

Miyazaki, T., Kim, H. M., Kokubo, T., et al., “Bonelike apatite formation on niobium oxide gel in a simulated body fluid”, Key Engineering Materials, vol. 192–195, pp. 43–46, 2001.

Miyazaki, T., Kim, H. M., Kokubo, T., et al., “Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid”, Journal of Sol-Gel Science and Technology, vol. 21, no. 1–2, pp. 83–88, 2001.

Best, S. M., Porter, A. E., Thian, E. S., et al., “Bioceramics: Past, present and for the future”, Journal of the European Ceramic Society, vol. 28, no. 7, pp. 1319–1327, 2008.

Bachar, A., “Elaboration et Caracterisations de Bioverres Si-Ca-Na-O et Si-Ca-Na-O-F Dopes A L’azote,” Grado D. Sc.,Mat ́eriaux, Universit ́e de Valenciennes et du Hainaut-Cambresis, Fran ̧cais, 2012.

Hench, L. L., Splinter, R. J., Allen, W. C., et al., “Bonding mechanisms at the interface of ceramic prosthetic materials”, Journal of Biomedical Materials Research, vol. 5, no. 6, pp. 117–141, 1971.

Hench, L. L., Paschall, H. a, “Direct chemical bond of bioactive glass-ceramic materials to bone and muscle.”, Journal of Biomedical Materials Research, vol. 7, no. 3, pp. 25–42, 1973.

Chatzistavrou, X., Zorba, T., Kontonasaki, E., et al., “Following bioactive glass behavior beyond melting temperature by thermal and optical methods”, Physica Status Solidi, vol. 201, no. 5, pp. 944–951, 2004.

Lin, C. C., Huang, L. C., Shen, P., “Na2CaSi2O6-P2O5 based bioactive glasses. Part 1: Elasticity and structure”, Journal of Non-Crystalline Solids, vol. 351, no. 40–42, pp. 3195–3203, 2005.

Nayak, J. P., Kumar, S., Bera, J., “Sol-gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization”, Journal of Non-Crystalline Solids, vol. 356, no. 28–30, pp. 1447–1451, 2010.

Leenakul, W., Tunkasiri, T., Tongsiri, N., et al., “Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica”, Materials Science and Engineering: C, vol. 61, pp. 695–704, 2016.

Dietrich, E., Oudadesse, H., Lucas-Girot, A., et al., “In vitro bioactivity of melt-derived glass 46s6 doped with magnesium”, Journal of Biomedical Materials Research Part A, vol. 88, no. 4, pp. 1087–1096, 2009.

Vallet-Regi, M., Salinas, A., Roman, J., “Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses”, Journal of Materials, pp. 515–518, 1999.

Monsalve, M. J., Síntesis y Deposisción de Biovidrios Pertenecientes al Sistema 31SiO2-11P2O5-(58-X)CaO-XMgO Sobre Aleaciones de Titanio y Acero AISI 316L Mediante Proyección Térmica, Grado D. Sc., Universidad de Antioquia, 2014.

Bellantone, M., Coleman, N. J., Hench, L. L., “Bacteriostatic action of a novel four-component bioactive glass”, Journal of Biomedical Materials Research Part A, vol. 51, no. 3, pp. 484–490, 2000.

El-Kady, A. M., Ali, A. F., Rizk, R. A., et al., “Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles”, Ceramics International, vol. 38, no. 1, pp. 177–188, 2012.

Luo, S. H., Xiao, W., Wei, X. J., et al., “In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 95 B, no. 2, pp. 441–448, 2010.

Sanz-Herrera, J. A., Boccaccini, A. R., “Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds”, International Journal of Solids and Structures, vol. 48, no. 2, pp. 257–268, 2011.

Cabanas-Polo, S., Philippart, A., Boccardi, E., et al., “Facile production of porous bioactive glass scaffolds by the foam replica technique combined with sol–gel/electrophoretic deposition”, Ceramics International, vol. 42, no. 5, pp. 5772–5777, 2016.

Wu, C., Chang, J., “Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors”, Journal of Controlled Release, vol. 193, pp. 282–295, 2014.

Zhu, Y., Kaskel, S., “Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (mbgs) and bioactive glasses (bgs) scaffolds”, Microporous Mesoporous Materials, vol. 118, no. 1–3, pp. 176–182, 2009.

Ochoa, I., Sanz-Herrera, J. A., García-Aznar, J. M., et al., “Permeability evaluation of 45S5 bioglass®-based scaffolds for bone tissue engineering”, Journal of Biomechanics, vol. 42, no. 3, pp. 257–260, 2009.

Li, W., Ding, Y., Rai, R., et al., “Preparation and characterization of phbv microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function”, Materials Science and Engineering: C, vol. 41, pp. 320–328, 2014.

Wei, J., Chen, Q. Z., Stevens, M. M., et al., “Biocompatibility and bioactivity of pdlla/TiO2 and pdlla/TiO2/bioglass?? nanocomposites”, Materials Science and Engineering: C, vol. 28, no. 1, pp. 1–10, 2008.

Ryszkowska, J. L., Auguścik, M., Sheikh, A., et al., “Biodegradable polyurethane composite scaffolds containing bioglass® for bone tissue engineering”, Composites Science and Technology, vol. 70, no. 13, pp. 1894–1908, 2010.

Verrier, S., Blaker, J. J., Maquet, V., et al., “Pdlla/bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment”, Biomaterials, vol. 25, no. 15, pp. 3013–3021, 2004.

Yao, Q., Nooeaid, P., Roether, J. A., et al., “Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery”, Ceramics International, vol. 39, no. 7, pp. 7517–7522, 2013.

Wu, C., Chang, J., Xiao, Y., “Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms”, Therapeutic Delivery, vol. 2, pp. 1189–1198, 2011.

Zheng, K., Bortuzzo, J. A., Liu, Y., et al., “Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability”, Colloids Surfaces B Biointerfaces, vol. 135, pp. 825–832, 2014.

Liu, Y. Z., Li, Y., Yu, X. Bin, et al., “Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass”, Materials Science and Engineering: C, vol. 41, pp. 196–205, 2014.

Poirier, T., Quercia, G., “Formation of hollow vitreous and semi-crystalline microspheres in slag flame spraying”, Ceramics International, vol. 41, no. 1, pp. 369–377, 2014.

Ercole, F. F., Maciel, L., Franco, C., et al., “Riesgo para infección de sitio quirúrgico en pacientes sometidos a cirugías ortopédicas”, Revista Latino-Americana de Enfermagem, vol. 19, no. 6, pp. 1-8, 2011. Powered by TCPDF (www.tcpdf.org).

Published

2016-12-05

How to Cite

Rojas Giraldo, O. I. (2016). Bioactive glasses: backgroung, trends and prospects in Colombia and the world. Revista Colombiana De Materiales, (9), 41–52. https://doi.org/10.17533/udea.rcm.326493

Issue

Section

Artículos