Vidrio bioactivo: antecedentes, tendencias y prospectivas en Colombia y el mundo
DOI:
https://doi.org/10.17533/udea.rcm.326493Palavras-chave:
biomateriales, vidrios bioactivos, scaffold, esferas porosasResumo
El mercado de los implantes óseos ha buscado posicionar los vidrios bioactivos como una excelente alternativa para la recuperación, reparación o sustitución de tejidos óseos, pues presentan una gama de propiedades biológicas que lo hacen atractivo para la restauración más rápida y efectiva de los pacientes con problemas ortopédicos. Sin embargo, desde el desarrollo de los vidrios bioactivos, cientos de investigadores han enfocado sus esfuerzos en mejorar las propiedades mecánicas de éstos para aumentar su aplicabilidad en el remplazo tisular. Para dicho fin, se han ideado diferentes estrategias entre las que se encuentran los cambios composicionales, sustituciones iónicas, cambios en cristalinidad y así como, la unión de diferentes materiales. A pesar de los múltiples esfuerzos, no se ha logrado satisfacer las necesidades en propiedades mecánicas, por lo que los cambios morfológicos en el vidrio bioactivo han planteado una nueva visión en la resolución de las falencias que presentan esos materiales.
Si bien a nivel mundial se le ha visto un alto potencial a los vidrios bioactivos y se realizan diversos esfuerzos para adaptarlos a las necesidades con el fin de mejorar la calidad de vida de las personas con afecciones óseas, en Colombia éste material no ha despertado un alto interés conllevando al uso de materiales tradicionales, que en muchas ocasiones no son la mejor alternativa para brindar a los pacientes afectados una recuperación más rápida y duradera.
Downloads
Referências
Binyamin, G., Shafi, B. M., Mery, C. M., “Biomaterials: a primer for surgeons”, Seminars in Pediatric Surgery, vol. 15, no. 4, pp. 276–283, 2006.
Chen, W. C., Kung, J. C., Chen, C. H., et al., “Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion”, Applied Surface Science, vol. 283, pp. 833–842, 2013.
Shih, C. J., Lu, P. S., Hsieh, C. H., et al., “Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses”, Applied Surface Science, vol. 314, pp. 967–972, 2014.
Yan, X., Yu, C., Zhou, X., et al., “Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities”, Angewandte Chemie International Edition, vol. 43, no. 44, pp. 5980–5984, 2004.
Monsalve, M., Síntesis y Deposición de Biovidrios Pertenecientes al Sistema 31SiO2-11P2O5-(58-X)CaO-XMgO Sobre Aleaciones de Titanio y Acero AISI 316L Mediante Proyección Térmica, Universidad de Antioquia-Universidad de Limoges, 2014.
Introduction, I.-, Les, I.-, Le, B. I.-, et al., “Utilisation des verres bioactifs dans les dispositifs médicaux implantables ,” pp. 1–20.
Cao, W., Hench, L. L., “Bioactive materials”, Ceramics International, vol. 22, no. 6, pp. 493–507, 1996.
Industry Experts, “Biomaterials: A global market overview”, Industry Experts, pp. 1–290, 2011.
César Cácua Ortiz, COLOMBIA DESARROLLA PRÓTESIS BIOCOMPATIBLES - ARCHIVO DIGITAL DE NOTICIAS DE COLOMBIA Y EL MUNDO DESDE 1.990 - ELTIEMPO.COM, 2013, [Online], Available: http://www.eltiempo.com/archivo/documento/CMS-13118475, [Accessed: 29-Aug-2016].
Kokubo, T., Kim, H. M., Kawashita, M., “Novel bioactive materials with different mechanical properties”, Biomaterials, vol. 24, no. 13, pp. 2161–2175, 2003.
Kokubo, T., Ito, S., Huang, Z. T., et al., “Ca,p-rich layer formed on high-strength bioactive Glass-Ceramic A-W.”, J. Biomed. Mater. Res., vol. 24, pp. 331–343, 1990.
Kokubo, T., “Surface chemistry of bioactive glass-ceramics”, Journal of Non-Crystalline Solids, vol. 120, no. 1–3, pp. 138–151, 1990.
Kitsugi, T., Yarnarnuro, T., Kokubot, T., “Analysis of a W Glass-Ceramic surface by micro‐beam X‐ray diffraction,”Journal of Biomedical Materials Research, vol. 24, pp. 259–273, 1990.
Ohtsuki, C., Kushitani, H., Kokubo, T., et al., “Apatite formation on the surface of ceravital-type glass-ceramic in the body”, Journal of Biomedical Materials Research, vol. 25, no. 11, pp. 1363–1370, 1991.
Elieen De Guire, LARRY HENCH—INVENTOR OF BIOGLASS AND CHILDREN’S AUTHOR—DIES AT AGE 77 | THE AMERICAN CERAMIC SOCIETY, 2015, [Online], Available: http://ceramics.org/ceramic-tech-today/larry-hench-inventor-of-bioglass-and-childrens-author-dies-at-age-77, [Accessed: 30-Aug-2016].
García, C., Galliano, P., Ceré, S., “Electrochemical evaluation of resistance to localised corrosion of vitreous coatings containing particles applied on metallic substrates for biomedical applications”, Materials Letters, vol. 57, no. 12, pp. 1810–1814, 2003.
Subjarea, L., “Scopus - analyze search results - bioactive glasses - structural analysis,” p. 2054, 2015.
Peláez, A., Garcia, C., Correa, J. C., et al., “Reliability weibull analysis for structural evaluation of bioactive films obtained by sol-gel process”, Annual Meeting of the International Society for Ceramics in Medicine, vol. 254–256, pp. 431–434, 2004.
García, C., Ceré, S., Durán, A., “Bioactive coatings deposited on titanium alloys”, Journal of Non-Crystalline Solids, vol. 352, no. 32–35, pp. 3488–3495, 2006.
Peláez, A., Pareja, A., García, C. P. P., et al., “Genotoxicity effects of ceramic coatings applied on metallic substrates using single cell gel electrophoresis assay in vitro”, Key Engineering Materials, vol. 286, pp. 593–596, 2005.
García, C., Ceré, S., Durán, A., “Bioactive coatings prepared by sol-gel on stainless steel 316l”, Journal of Non-Crystalline Solids, vol. 348, pp. 218–224, 2004.
Durán, A., Conde, A., Coedo, a. G., et al., “Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices”, Journal of Materials Chemistry, vol. 14, no. 14, p. 2282, 2004.
Zhitomirsky, D., Roether, J. A., Boccaccini, A. R., et al., “Electrophoretic deposition of bioactive glass/polymer composite coatings with and without ha nanoparticle inclusions for biomedical applications”, Journal of Materials Processing Technology, vol. 209, no. 4, pp. 1853–1860, 2009.
Monsalve, M., Ageorges, H., Lopez, E., et al., “Bioactivity and mechanical properties of plasma-sprayed coatings of bioglass powders”, Surface and Coatings Technology, vol. 220, pp. 60–66, 2013.
Monsalve, M., Lopez, E., Ageorges, H., et al., “Bioactivity and mechanical properties of bioactive glass coatings fabricated by flame spraying”, Surface and Coatings Technology, vol. 268, pp. 142–146, 2015.
Correa, R., M. monsalve, López, M. E., et al., “Influencia de los parámetros de deposición en la porosidad y y adherencia de recubrimientos de biovidrios del sistema 31SiO2-11P2O5-51CaO –7MgO elaborados mediante proyección térmica por combustión oxiacetilénica,” Revista Lationamericana de Metalurgia y Materiales, vol. 33, no. 1, pp. 92-99, 2010.
Ciro, E., Zapata, N., López, M. E., “Elaboración de un cemento óseo de fosfato de calcio con una adición de biovidrio”, Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 54, no. 2, pp. 84–92, 2015.
Company Colgate-Palmolive, COMPOSICIONES ORALES QUE CONTIENEN COMPUESTOS DE POLIGUANIDINO Y MÉTODOS DE PREPARACIÓN Y USO DE LAS MISMAS, Colombia, 2011.
Kim, H.-M., Miyaji, F., Kokubot, T., et al., “Bioactivity of M2O-TiO2-SiO2 (m=na, k) glasses: An in vitro evaluation”, Ceramic Society of Japan, vol. 69, pp. 2387–94, 1996.
Uchida, M., Kim, H. M., Kokubo, T., et al., “Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions”, Journal of the American Ceramic Society, vol. 84, no. 9, pp. 2041–2044, 2001.
Miyazaki, T., Kim, H. M., Kokubo, T., et al., “Bonelike apatite formation on niobium oxide gel in a simulated body fluid”, Key Engineering Materials, vol. 192–195, pp. 43–46, 2001.
Miyazaki, T., Kim, H. M., Kokubo, T., et al., “Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid”, Journal of Sol-Gel Science and Technology, vol. 21, no. 1–2, pp. 83–88, 2001.
Best, S. M., Porter, A. E., Thian, E. S., et al., “Bioceramics: Past, present and for the future”, Journal of the European Ceramic Society, vol. 28, no. 7, pp. 1319–1327, 2008.
Bachar, A., “Elaboration et Caracterisations de Bioverres Si-Ca-Na-O et Si-Ca-Na-O-F Dopes A L’azote,” Grado D. Sc.,Mat ́eriaux, Universit ́e de Valenciennes et du Hainaut-Cambresis, Fran ̧cais, 2012.
Hench, L. L., Splinter, R. J., Allen, W. C., et al., “Bonding mechanisms at the interface of ceramic prosthetic materials”, Journal of Biomedical Materials Research, vol. 5, no. 6, pp. 117–141, 1971.
Hench, L. L., Paschall, H. a, “Direct chemical bond of bioactive glass-ceramic materials to bone and muscle.”, Journal of Biomedical Materials Research, vol. 7, no. 3, pp. 25–42, 1973.
Chatzistavrou, X., Zorba, T., Kontonasaki, E., et al., “Following bioactive glass behavior beyond melting temperature by thermal and optical methods”, Physica Status Solidi, vol. 201, no. 5, pp. 944–951, 2004.
Lin, C. C., Huang, L. C., Shen, P., “Na2CaSi2O6-P2O5 based bioactive glasses. Part 1: Elasticity and structure”, Journal of Non-Crystalline Solids, vol. 351, no. 40–42, pp. 3195–3203, 2005.
Nayak, J. P., Kumar, S., Bera, J., “Sol-gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization”, Journal of Non-Crystalline Solids, vol. 356, no. 28–30, pp. 1447–1451, 2010.
Leenakul, W., Tunkasiri, T., Tongsiri, N., et al., “Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica”, Materials Science and Engineering: C, vol. 61, pp. 695–704, 2016.
Dietrich, E., Oudadesse, H., Lucas-Girot, A., et al., “In vitro bioactivity of melt-derived glass 46s6 doped with magnesium”, Journal of Biomedical Materials Research Part A, vol. 88, no. 4, pp. 1087–1096, 2009.
Vallet-Regi, M., Salinas, A., Roman, J., “Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses”, Journal of Materials, pp. 515–518, 1999.
Monsalve, M. J., Síntesis y Deposisción de Biovidrios Pertenecientes al Sistema 31SiO2-11P2O5-(58-X)CaO-XMgO Sobre Aleaciones de Titanio y Acero AISI 316L Mediante Proyección Térmica, Grado D. Sc., Universidad de Antioquia, 2014.
Bellantone, M., Coleman, N. J., Hench, L. L., “Bacteriostatic action of a novel four-component bioactive glass”, Journal of Biomedical Materials Research Part A, vol. 51, no. 3, pp. 484–490, 2000.
El-Kady, A. M., Ali, A. F., Rizk, R. A., et al., “Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles”, Ceramics International, vol. 38, no. 1, pp. 177–188, 2012.
Luo, S. H., Xiao, W., Wei, X. J., et al., “In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 95 B, no. 2, pp. 441–448, 2010.
Sanz-Herrera, J. A., Boccaccini, A. R., “Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds”, International Journal of Solids and Structures, vol. 48, no. 2, pp. 257–268, 2011.
Cabanas-Polo, S., Philippart, A., Boccardi, E., et al., “Facile production of porous bioactive glass scaffolds by the foam replica technique combined with sol–gel/electrophoretic deposition”, Ceramics International, vol. 42, no. 5, pp. 5772–5777, 2016.
Wu, C., Chang, J., “Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors”, Journal of Controlled Release, vol. 193, pp. 282–295, 2014.
Zhu, Y., Kaskel, S., “Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (mbgs) and bioactive glasses (bgs) scaffolds”, Microporous Mesoporous Materials, vol. 118, no. 1–3, pp. 176–182, 2009.
Ochoa, I., Sanz-Herrera, J. A., García-Aznar, J. M., et al., “Permeability evaluation of 45S5 bioglass®-based scaffolds for bone tissue engineering”, Journal of Biomechanics, vol. 42, no. 3, pp. 257–260, 2009.
Li, W., Ding, Y., Rai, R., et al., “Preparation and characterization of phbv microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function”, Materials Science and Engineering: C, vol. 41, pp. 320–328, 2014.
Wei, J., Chen, Q. Z., Stevens, M. M., et al., “Biocompatibility and bioactivity of pdlla/TiO2 and pdlla/TiO2/bioglass?? nanocomposites”, Materials Science and Engineering: C, vol. 28, no. 1, pp. 1–10, 2008.
Ryszkowska, J. L., Auguścik, M., Sheikh, A., et al., “Biodegradable polyurethane composite scaffolds containing bioglass® for bone tissue engineering”, Composites Science and Technology, vol. 70, no. 13, pp. 1894–1908, 2010.
Verrier, S., Blaker, J. J., Maquet, V., et al., “Pdlla/bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment”, Biomaterials, vol. 25, no. 15, pp. 3013–3021, 2004.
Yao, Q., Nooeaid, P., Roether, J. A., et al., “Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery”, Ceramics International, vol. 39, no. 7, pp. 7517–7522, 2013.
Wu, C., Chang, J., Xiao, Y., “Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms”, Therapeutic Delivery, vol. 2, pp. 1189–1198, 2011.
Zheng, K., Bortuzzo, J. A., Liu, Y., et al., “Bio-templated bioactive glass particles with hierarchical macro-nano porous structure and drug delivery capability”, Colloids Surfaces B Biointerfaces, vol. 135, pp. 825–832, 2014.
Liu, Y. Z., Li, Y., Yu, X. Bin, et al., “Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass”, Materials Science and Engineering: C, vol. 41, pp. 196–205, 2014.
Poirier, T., Quercia, G., “Formation of hollow vitreous and semi-crystalline microspheres in slag flame spraying”, Ceramics International, vol. 41, no. 1, pp. 369–377, 2014.
Ercole, F. F., Maciel, L., Franco, C., et al., “Riesgo para infección de sitio quirúrgico en pacientes sometidos a cirugías ortopédicas”, Revista Latino-Americana de Enfermagem, vol. 19, no. 6, pp. 1-8, 2011. Powered by TCPDF (www.tcpdf.org).