DESIGN OF A CUSTOMIZED PRESS-FIT TIBIAL COMPONENT FOR A KNEE REPLACEMENT SYSTEM FOR ITS MANUFACTURE THROUGH DMLS

Authors

  • Jhoan Alexis Mina Córdoba Advanced Technology Center
  • Carlos Poblano Salas Advanced Technology Center
  • Oscar Barcina Sánchez Research Center for Applied Science and Advanced Technology
  • John Henao Research Center for Applied Science and Advanced Technology
  • Jorge Corona Castuera Advanced Technology Center

DOI:

https://doi.org/10.17533/udea.rcm.n17a06

Keywords:

additive manufacturing, knee prosthesis, gyroid structure, customization, design

Abstract

Custom orthopedic replacement system designs represent a new challenge for biomedical industry; the anatomical characteristics of the patient and the density of the bone tissue to be replaced are two essential elements for the design and manufacture of such devices. The present project describes a pr otocol for the development of a tibial plateau design for a total knee replacement system basedon the information obtained from X-ray computational tomography. The protocol describes the measurement of the apparent bone density based on this information; also, the determination of some mechanical constants such as Young's modulus and Poisson's ratio. Finally, the results of the apparent bone density were compared with values of density obtained in gyroid cell structures, previously developed by the work gr oup. Likewise, the design of a press-fit fixation stem using this type of cellular structure is presented.
|Abstract
= 420 veces | PDF (ESPAÑOL (ESPAÑA))
= 237 veces|

Downloads

Download data is not yet available.

Author Biographies

Jhoan Alexis Mina Córdoba, Advanced Technology Center

Researcher, Advanced Technology Center (CIATEQ A.C.), Querétaro, México.

Carlos Poblano Salas, Advanced Technology Center

Researcher, Advanced Technology Center (CIATEQ A.C.), Querétaro, Mexico.

Oscar Barcina Sánchez, Research Center for Applied Science and Advanced Technology

Researcher, Research Center for Applied Science and Advanced Technology (CICATA), National Polytechnic Institute (IPN), Querétaro Unit, México.

John Henao, Research Center for Applied Science and Advanced Technology

Researcher, Research Center for Applied Science and Advanced Technology (CICATA), National Polytechnic Institute (IPN), Querétaro Unit, México.

Jorge Corona Castuera, Advanced Technology Center

Professor, Advanced Technology Center (CEATEQ A.C.), Querétaro, Mexico.

References

LENS.ORG, «The Lens -Free and open patent and scholary search,» [En línea]. Available: https://www.lens.org/lens/search?n=10&q=(Knee%20Prosthesis)%20AND%20classification_cpc:(A*)%20AND%20classification_cpc:(A61*)&l=en&st=true&j=JP,CN,US,DE,EP,WO,CA,MX&preview=true&v=analysis&p=0. [Último acceso: 11 Febrero 2020].

C. M. P. Moure, «Articular Prosthesis Of The Patella And Distal Femur». Mexico Patente 083-687-799-295-721, 16 03 2005.

C. A. R. García, E. C. Paredes, J. N. C. Castillo, J. A. Rosales y J. E. H. D. León, «Automatic Knee Prosthesis.». Mexico Patente 181-838-813-515-953, 06 10 2017.

N. Conlisk, P. Pankaj y C. R. Howie, «Stress Shielding in the Distal Femur after Total Knee Arthroplasty.,» de ORS 2011 Annual Meeting, Edinburgh, UK, 2011.

M. Sanjay, S. K. Gupta, A. C. Amar, R. J y S. Chitranjan, «Review Article: Osteolysis After Total Knee Arthroplasty.» Elsevier, vol. 22, nº 6, 2007.

J. L. M. Rodríguez y C. A. C. Méndez, «Diseño de prótesis interna de rodilla.,» de VII Conferencia Científica Internacional de Ingeniería Mecánica. COMEC-2012, La Habana, Cuba, 2012.

P. Loeza–Magaña, «Rehabilitación en artroplastia de rodilla: modelo de 3 fases,» Revista Colombiana de Medicina Física y Rehabilitación, vol. 25, 2015.

M. J. Pappas, G. Makris y F. Buechel, «Contact stresses in metal-plastic total knee replacements.,» Biomed Eng Tech Rep, vol. 1, nº 7, 1987.

J. B. Finlay, R. B. Bourne, W. J. Kraemer, T. K. Moroz y C. H. Rorabeck, «Stiffness of bone underlying the tibial plateaus of osteoarthritic and normal knees.,» Clinical orthopaedics and related research, vol. 247, 1989.

U. Witzel, «Biomechanische und tribologische Aspekte der Kniegelenkendoprothetik.» de In Praxis der Knieendoprothetik., Berlin, Heidelberg, Springer, 2001.

D. Reilly, P. S. Walker, M. Ben-Dov y F. C. Ewald, «Effects of tibial components on load transfer in the upper tibia,» Clinical orthopaedics and related research, vol. 165, 1982.

I. Hvid, «Trabecular bone strength at the knee.» Clinical orthopaedics and related research, vol. 227, 1988.

K. Murase, R. D. Crowninshield, D. R. Pedersen y T. S. Chang, «An analysis of tibial component design in total knee arthroplasty.,» Journal of biomechanics, vol. 16, 1983.

R. B. Bourne y J. B. Finlay, «The influence of tibial component intramedullary stems and implant-cortex contact on the strain distribution of the proximal tibia following total knee arthroplasty. An in vitro study.» Clinical orthopaedics and related research, vol. 208, 1986.

C. L. Peters, J. Erickson, R. G. Kloepper y R. A. Mohr, «Revision total knee arthroplasty with modular components inserted with metaphyseal cement and stems without cement,» The Journal of arthroplasty, vol. 20, 2005.

H. Attara, S. Ehtemam-Haghighia, N. Soroa, D. Kenta y M. S. Dargusch, «Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development,» Journal of Alloys and Compounds, vol. 827, 2020.

C.-C. Huanga, Ming-JunLia, P.-I. Tsaib, P.-C. Kunga, S.-Y. Chena, J.-S. Sunc y Nien-TiTsoua, «Novel design of additive manufactured hollow porous implants,» Dent. Mater. , 2020.

L. A. Lehmann, R. E. Alvarez, A. Macovski, W. R. Brody, N. J. Pelc, S. J. Riederer y A. L. & Hall, «Generalized image combinations in dual KVP digital radiography.,» vol. 8, nº 5, 1981.

J. T. Bushberg, The essential physics of medical imaging, Lippincott Williams & Wilkins, 2002.

K. T. Saxena R, «Computer modeling for evaluating trabecular bone biomechanics» de Mechanical testing of bone and the bone-implant interface, Boca Raton, USA, CRC Press, 2000, pp. 407 -36.

G. Bevill, S. K. Eswaran, A. Gupta, P. Papadopoulos y T. M. Keaveny, «Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone,» Bone, pp. 1218 -25, 2006.

V. Luzzati, A. Tardieu, T. Gulik-Krzywicki, E. Rivas y F. Reiss-Husson, «Structure of the cubic phases of lipid–water systems.,» Nature, vol. 220, 1968.

Z. Yosibash, N. Trabelsi y C. Milgrom, «Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.,» Journal of biomechanics Vol. 40., 2007.

F. C. Buroni, P. E. Commisso, A. P. Cisilino y M. Sammartino, «Determinación de las constantes elásticas anisótropas del tejido óseo utilizando tomografías computadas. Aplicación a la construcción de modelos de elementos finitos,» vol. 18, 2004.

D. Wirtz, N. Schiffers, T. Pandorf, K. Radermacher, D. Weichert y R. Forst, «Critical evaluation of known bone material properties to realize anisotropic FE simulation of the proximal femur,» vol. 33, 2000.

A. Cisilino, D. D’Amico, F. Buroni, P. Commisso, M. Sammartino y C. Capiel, «Construcción de modelos computacionales para el análisis de esfuerzos mecánicos de piezas óseas utilizando imágenes de TC: aplicación a la articulación gleno-humeral.,» Revista argentina de radiología, vol. 72, nº 4,2008.

H. S. Park, Y. J. Lee, S. H. Jeong y T. G. Kwon, «Density of the alveolar and basal bones of the maxilla and the mandible,» vol. 133, 2008.

M. Quilez, B. A. Seral y M. Peréz, «Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: A comparison of different implant systems,» PLoS ONE 12(9), 2017.

M. M. Hernández, M. M. Fernández y J. R. Ramírez, «Variaciones de la densidad y de la concentración mineral ósea entre distintas comunidades,» Anales de Pediatría, vol. 52, nº 4, pp. 319 -326, 2000.

S. Cowin y M. M. Mehrabadi, «Identification of the elastic symmetry of bone,» Journal of Biomechanics, vol. 22, 1989.

D. Reilly y A. H. Burstein, «The mechanical properties of cortical bone,» Journal of Bone and Joint Surgery, vol. 56, 1974.

R. Ashman, «A continous wave technique for the measurement of the elastic properties of cortical bone.,» Journal of Biomechanics, vol. 17, 188.

D. T. Reilly y A. H. Burstein, «The mechanical properties of cortical bone,» Journal of Bone and Joint Surgery, vol. 156A, 1974.

F. M. Elise, U. U. Ginu y I. Amira, «Bone Mechanical Properties in Healthy and Diseased States.» Annu Rev Biomed Eng, vol. 20, 2018.

Published

2021-09-15

How to Cite

Mina Córdoba, J. A., Poblano Salas, C., Barcina Sánchez, O., Henao, J., & Corona Castuera, J. (2021). DESIGN OF A CUSTOMIZED PRESS-FIT TIBIAL COMPONENT FOR A KNEE REPLACEMENT SYSTEM FOR ITS MANUFACTURE THROUGH DMLS. Revista Colombiana De Materiales, (17), 20. https://doi.org/10.17533/udea.rcm.n17a06

Issue

Section

Artículos