Study of prototypes of ceramic bricks prototypes made from gold mining residues
DOI:
https://doi.org/10.17533/udea.rcm.342056Keywords:
pressed brick, waste, waste, rupture module, mechanical properties and physical propertiesAbstract
This article shows the results of an investigation focused on the elaboration of ceramic brick prototypes from mixtures of two types of gold mining waste from the Northeast of Antioquia: the first one consists of a clay layer generated from alluvial operations (RA) and the second one consists of flotation tails (RF) generated from the benefit of grain ore. The proportions by weight of the waste used in this project were 0, 5, 10, and 15 RF and with RA to be completed; the different samples were formed by pressing at 3 MPa and then sintered at 1050 °C for 3 h. The elemental composition of the two residues was determined by the X-ray fluorescence technique and the crystalline phases of both the raw materials and the sintered bricks using the X-ray diffraction technique. The modulus of rupture, percentage of moisture absorption, apparent porosity, bulk density were determined for the different prototypes of sintered bricks. The results for the brick prototypes manufactured with the different mixtures were compared with those presented by a prototype manufactured under the same conditions with a typical clay for brick manufacturing in the region (AP), and with the criteria required by the NTC standard 4017, which governs the quality parameters of non-structural masonry materials. Finally, it was found that there is an effect caused by an increase in the percentage by weight of RF, on the burning contraction of brick prototypes; there is no significant effect on the modulus of rupture generated by the change in the percentage of RF.
Downloads
References
A. Al-Fakih, B. S. Mohammed, M. S. Liew, and E. Nikbakht, “Incorporation of waste materials in the manufacture of masonry bricks: An update review,” J. Build. Eng., vol. 21, no. September 2018, pp. 37–54, 2019.
M. A. Aramburo and Y. Olaya, “Problemática de los pasivos ambientales mineros en Colombia,” Gestión y Ambient., vol. 15, no. 3, pp. 125–133, 2012.
É. Lèbre, G. D. Corder, and A. Golev, “Sustainable practices in the management of mining waste: A focus on the mineral resource,” Miner. Eng., vol. 107, pp. 34–42, 2017.
E. Casadiego Quintero, A. G. Gutiérrez Bayona, M. Á. Herrera Lopez, and M. L. Páez Rojas, “Manejo estratégico de la producción de residuos estériles de minería sustentable, utilizando prácticas mineras eco-eficientes en Colombia,” Rev. Investig. Agrar. y Ambient., vol. 8, no. 2, pp. 107–118, 2017.
G.-M. Dora, “Sistema productivo del carbón mineral y sus residuos,” Universidad Autónoma de Nuevo León, 1999.
M. D. P. Triviño-Restrepo and E. Gil-Lancherosa, “Utilización de los residuos de la extracción de carbón y del proceso de coquización junto con desechos plásticos, como alternativa de obtención de materiales.,” Energética, vol. 46, pp. 85–95, 2015.
J. M. Barbero, E. Montero, A. Vallés, M. A. Plasencia, J. Romanyk, and J. López, “Infección de prótesis articular en el paciente con fractura de cadera. Diferencias frente a la infección de prótesis electiva,” Rev. Esp. Quim., vol. 29, no. 5, pp. 273–277, 2016.
S. N. Monteiro and C. M. F. Vieira, “On the production of fired clay bricks from waste materials: A critical update,” Constr. Build. Mater., vol. 68, pp. 599–610, 2014.
C. Coletti, G. Cultrone, L. Maritan, and C. Mazzoli, “How to face the new industrial challenge of compatible, sustainable brick production: Study of various types of commercially available bricks,” Appl. Clay Sci., vol. 124–125, pp. 219–226, 2016.
M. S. El-Mahllawy, “Characteristics of acid resisting bricks made from quarry residues and waste steel slag,” Constr. Build. Mater., vol. 22, no. 8, pp. 1887–1896, 2008.
Y. Taha, M. Benzaazoua, R. Hakkou, and M. Mansori, “Natural clay substitution by calamine processing wastes to manufacture fired bricks,” J. Clean. Prod., vol. 135, pp. 847–858, 2016.
X. Lingling, G. Wei, W. Tao, and Y. Nanru, “Study on fired bricks with replacing clay by fly ash in high volume ratio,” Constr. Build. Mater., vol. 19, no. 3, pp. 243–247, 2005.
S. N. Joglekar, R. A. Kharkar, S. A. Mandavgane, and B. D. Kulkarni, “Sustainability assessment of brick work for low-cost housing: A comparison between waste based bricks and burnt clay bricks,” Sustain. Cities Soc., vol. 37, no. November 2017, pp. 396–406, 2018.
C. A. García, M. C. García Vaca, and M. L. Vaca Bohórquez, “Resistencia mecánica de ladrillos preparados con mezclas de arcilla y lodos provenientes del tratamiento de aguas residuales.,” Rev. tecnura, vol. 17, no. 38, pp. 68–81, 2013.
C. A. García-Ubaque, A. González-Hässig, and M. L. Vaca-Bohórquez, “Ceramic bricks made from municipal solid waste incineration derived clay and ashes: A quality study,” Ing. e Investig., vol. 33, no. 2, pp. 36–41, 2013.
N. Afanador García, A. C. Ibarra Jaime, and C. A. López Durán, “Caracterización de arcillas empleadas en pasta cerámica para la elaboración de ladrillos en la zona de Ocaña , Norte de Santander,” Epsilon, vol. 20, no. ISSN 1692-1259, pp. 101–119, 2013.
F. Sandford and B. Liljegren, “La formación de color en ladrillos rojos y amarillos,” Trans. Chalmers Univ. Technol., no. 282, pp. 40–48, 1964.
S. K. Amin, S. A. El-Sherbiny, A. A. M. A. El-Magd, A. Belal, and M. F. Abadir, “Fabrication of geopolymer bricks using ceramic dust waste,” Constr. Build. Mater., vol. 157, pp. 610–620, 2017.
H. H. Murray, Applied Clay Mineralogy - Occurrences, Processing and application of Kaolins, Bentonites, Palygorskite-Sepiolite, and common Clays, vol. 2. Paises Bajos, 2006.
S. Kaufhold, M. Hein, R. Dohrmann, and K. Ufer, “Quantification of the mineralogical composition of clays using FTIR spectroscopy,” Vib. Spectrosc., vol. 59, pp. 29–39, 2012.
C. Rodriguez-Navarro, G. Cultrone, A. Sanchez-Navas, and E. Sebastian, “TEM study of mullite growth after muscotive breakdown,” Am. Mineral., vol. 88, no. 5, pp. 713–724, 2003.
Ö. Çelik, I. Y. Elbeyli, and S. Pişkin, “Utilization of gold tailings as an additive in Portland cement,” Waste Manag. Res., vol. 24, no. 3, pp. 215–224, Jun. 2006.
J. Galindo, A. Muñoz, and M. Caicedo, “Caracterización de los ladrillos constitutivos de un puente histórico en Popayán (Colombia),” Rev. Ing. e invectigacion, vol. 28, no. 2, pp. 15–21, 2008.
Y. de B. C. G. I. Ramírez, “Análisis por Espectroscopía Infraroja de algunas arcillas colombianas,” Revista Colombiana de Química, vol. 10, no. Chemistry. pp. 45–52, 1980.
U. P. de Madrid, “Métodos de análisis térmico 1. Introducción,” pp. 1–32, 2010.
A. Manni, A. El Haddar, I. E. E. A. El Hassani, A. El Bouari, and C. Sadik, “Valorization of coffee waste with Moroccan clayto produce a porous red ceramics (class BIII),” Bol. la Soc. Esp. Ceram. y Vidr., pp. 1–10, 2019.
A. Terzić, L. Andrić, and V. Mitić, “Mechanically activated coal ash as refractory bauxite shotcrete microfiller: Thermal interactions mechanism investigation,” Ceram. Int., vol. 40, no. 8, Part A, pp. 12055–12065, Sep. 2014.
Z. Zhang, Y. C. Wong, A. Arulrajah, and S. Horpibulsuk, “A review of studies on bricks using alternative materials and approaches,” Constr. Build. Mater., vol. 188, pp. 1101–1118, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Colombiana de Materiales

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.