Colombian vs. American corn: quality, chemical composition, mycotoxin content and metabolizable energy
DOI:
https://doi.org/10.17533/udea.rccp.v35n1a04Keywords:
animal feed, apparent metabolizable energy, broiler chickens, chemical composition, corn kernel quality, Colombian corn, fungal toxins, grain quality, corn, mycotoxins, nutritional value, US corn, Zea maysAbstract
Background: Corn is, quantitatively, one of the most important world crops (ranking second only after wheat) and a key ingredient in animal feeds. Objective: to assess and compare corn quality, mycotoxin content, chemical composition and apparent metabolizable energy (AME) of domestic and imported corn. Methods: Grain quality (USDA grading system) was determined in 30 samples of domestic and 21 samples of imported corn. From each origin, 15 samples were subjected to proximal analysis and 10 were used to determine fatty acid composition. Mycotoxin analysis was conducted on 30 samples of domestic and 23 of imported corn. Results: six of the 30 domestic samples corresponded to US1 grade (highest quality) vs. none of the imported. In the “sample grade” category (lowest quality), 10 and 6 samples corresponded to imported and domestic corn, respectively. Soybeans were found as contaminant in 15 of the 21 imported corn samples. Aspergillus spp. mycotoxins such as ochratoxin A were not detected, and aflatoxins were found in only a few samples at very low levels. Fusariotoxins such as deoxynivalenol and zearalenone were found in 61 and 43% of imported samples, respectively, but in none of the domestic samples. Domestic corn had lower carbohydrate content compared with imported corn (85.4 vs. 86.7%), but higher crude fat (3.8 vs. 3.1%). The AME values for domestic and imported corn were 3,697 and 3,378 kcal/kg, respectively. The fatty acid profiles from both corn types were similar. Conclusion: This study found significant differences between locally-grown and imported corn, particularly in terms of crude fat, AME content, fusariotoxins, and contaminant seeds (soybeans). These findings suggest that locally-grown corn might have nutritional and toxicological advantages over corn imported from the United States.
Downloads
References
Agama-Acevedo E, Salinas-Moreno Y, Pacheco-Vargas G, Bello-Pérez LA. Características físicas y químicas de dos razas de maíz azul: morfología del almidón. Rev Mex Cienc Pecu 2011; 2(3):317-329. URL: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000300002&lng=es&tlng=es.
Aguillón-Páez Y, Romero L, Diaz G. Effect of full-fat sunflower or flaxseed seeds dietary inclusion on performance, egg yolk fatty acid profile and egg quality in laying hens. Animal Nutrition 2020; 6(2):179-184. DOI: https://doi.org/10.1016/j.aninu.2019.12.005
AOAC. Association of Official Analytical Chemists. Official Methods of Analyses. 2006. 18th Ed. Gaithers burg MD, USA.
Carrillo W, Carpio C, Morales D, Vilcacundo E, Alvarez M, Silva M. Content of fatty acids in corn (Zea mays L.) oil from Ecuador. Asian J Pharm Clin Res 2017; 10(8):150-153.
DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i8.18786
Céspedes A. Desarrollo y estandarización de tres técnicas analíticas por cromatografía de alta eficiencia (HPLC) y determinación de los niveles de con aflatoxinas, zearalenona y ocratoxina A en materias primas y alimento terminado empleados para la nutrición de aves y cerdos en Colombia.Trabajo de grado para optar por el título de Magister en Ciencias, Postgrado en Salud y Producción Animal 1997. Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia.
Christensen CM, Kaufmann HH. Deterioration of stored grains by fungi. Annu Rev Phytopathol 1965; 3(1):69-84.
CIMMYT. Centro internacional de mejoramiento de maíz y trigo. Calidad de grano para técnicos postcosecha. Laboratorio de calidad nutricional de maíz. México D.F. 2016; Pág 1-10.
Diaz G. Toxicología de la micotoxinas y sus efectos en avicultura comercial. Editorial Acribia. Zaragoza (España); 2020.
Diaz G, Céspedes A. Natural occurrence of zeralenone in feeds and feedstuffs used in poultry and pig nutrition in Colombia. Mycotoxin Res 1997; 13(2):81-87. DOI: https://doi.org/10.1007/BF02945070
FDA U. Guidance for Industry on Fumonisin Levels in Human Foods and Animal Feeds. Dockets Management Branch (HFA-305). Rockville, MD: US Food and Drug Administration. 2001. URL https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds
FENALCE. Federación Nacional de Cultivadores de Cereales y Leguminosas. Comunicado de los agricultores nacionales de maíz. [access date: November 2019] URL: https://www.fenalce.org/alfa/pg.php?pa=60
Győri Z. Corn: Grain-Quality Characteristics and Management of Quality Requirements. In: Wrigley C, Batey I, Miskelly D, editors. Cereal Grains: Assessing and Managing Quality. 2nd ed. Woodhead Publishing; 2017. p. 257- 290. DOI: https://doi.org/10.1016/B978-0-08-100719-8.00011-5
Harwood J. 13 Environmental effects on plant lipid biochemistry. In: Harwood JL, editor. Plant lipid biosynthesis: fundamentals and agricultural applications. Vol 67. Cambridge University press; 1998. p.305
Hernández C, Rodríguez Y, Niño Z. Efecto del almacenamiento de granos de maiz (Zea mays) sobre la calidad del aceite extraido. Inf. Tecnol 2009; 20(4):21-30. DOI: http://dx.doi.org/10.4067/S0718-07642009000400004
Lee HJ, Ryu D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. Agric Food Chem 2017; 65(33):7034-7051. DOI: https://doi.org/10.1021/acs.jafc.6b04847
Leeson S, Summers J. Scott’s. Nutrition of the chicken. 4rd edition. University Books, Guelph, Ontario, Canada. 2001. p. 42.
Martos P, Thompson W, Diaz G. Multiresidue mycotoxin analysis in wheat, barley, oats, rye and maize grain by high-performance liquid chromatography-tandem mass spectrometry. World Mycotoxin J 2010; 3(3):205-223. DOI: https://doi.org/10.3920/WMJ2010.1212
Micolucci V. Producción mundial de maíz 2019/2020. Food news. Noticias diarias de la industria de alimentos y bebidas América Latina. [access date: January 2019] URL: https://www.foodnewslatam.com/paises/89-peru/9203-producci%C3%B3n-mundial-de-ma%C3%ADz-2019-2020.html
Ministerio de salud y protección social. (2013). Niveles máximos de contaminantes en los alimentos destinados al consumo humano. Resolución 4506 del 30 de octubre de 2013.
National Research Council. Nutrient requirements of poultry (9th rev.), Natl. Acad. Press, Washington, D.C 1994. DOI: https://doi.org/10.17226/2114
Norma Técnica Colombiana. NTC 535-1. 2014. Alimento para animales maíz. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Apartado 14237. Bogotá, D.C. Editada 2014-11-06.
Norma Técnica Colombiana. NTC 6027. 2013. Determinación de toxinas T-2 y HT-2 en granos de cereal mediante limpieza por inmunoafinidad y cromatografía líquida con detección de fluorescencia. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Apartado 14237. Bogotá, D.C. Editada 2013-11-27.
Norma Técnica Colombiana. NTC 5961. 2012. Determinación de deoxinivalenol (DON) en harina de trigo blanca, harina de trigo integral y salvado de trigo mediante cromatografía líquida de alta eficiencia / extracción de fase sólida. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Apartado 14237. Bogotá, D.C. Editada 2012-12-21.
Norma Técnica Colombiana. NTC 5472. 2007. Determinación de ocratoxina A en cereales y sus derivados por cromatografía líquida de alta eficiencia, HPLC. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Apartado 14237. Bogotá, D.C. Editada 2007-03-28.
Norma Técnica Colombiana. NTC 4881. 2000. Método de análisis de Zearalenona de ocurrencia natural. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Apartado 14237. Bogotá, D.C.
Norma Técnica Colombiana. NTC 1232. 1996. Método de análisis de aflatoxinas de ocurrencia natural (B1, B2, G1 y G2). Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Apartado 14237. Bogotá, D.C. Primera actualización 2001-09-11.
Perilla NS, Cruz MP, De Belalcazar F, Diaz, GJ.. Effect of temperature of wet extrusion on the nutritional value of full‐fat soya beans for broiler chickens. Br Poult Sci 1997; 38(4):412-416. DOI: https://doi.org/10.1080/00071669708418011
Sakomura N, Rostagno H. Métodos de pesquisa emnutriçao de monogastricos. Metodologias para avaliar o conteúdode energía dos alimentos. 2ª ed. Jaboticabal:Funep. Universidade Federal de Viçosa. 2016. P.53.
Statistix 9. (2008). User’s Manual, Analytical software. Tallahassee, Florida.
Tovar CDG, Colonia BSO. Producción y procesamiento del maíz en Colombia. Revista Guillermo de Ockham 2013; 11(1):97-110. DOI: https://doi.org/10.21500/22563202.604
Tovar, T. (2008). Caracterización Morfológica y termica del almidon de Maíz (Zea mays L) obtenido por diferentes metodos de aislamiento.Universidad autónoma del estado de Hidalgo. Tesis pregrado. Pachuca de Soto, Hidalgo.
USDA-GIPSA. United States Standards for Corn. (1996). USDA Grain Inspection, Packers and Stockyards Administration (GIPSA). [access date: December 2019]
URL: http://www.gipsa.usda.gov/fgis/standards/810corn.pdf
Vanegas-Angarita, H. CEO Federación Nacional de Cultivadores de Cereales y Leguminosas. Personal communication. 2019.
Williams CH, David DJ, Iismaa O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci 1962; 59(3):381-385. DOI: https://doi.org/10.1017/S002185960001546X
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.