Effect of tropical forage species in silvopastoral arrangements on methane production and in vitro fermentation parameters in a RUSITEC system

Authors

  • Aldo J Ibarra-Rondón Universidad Popular del Cesar
  • Pedro J Fragoso-Castilla Universidad Popular del Cesar
  • Luis A Giraldo-Valderrama Universidad Nacional de Colombia
  • José E Mojica-Rodríguez Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)

DOI:

https://doi.org/10.17533/udea.rccp.v35n4a02

Keywords:

animal adaptation, cattle, climate change, forages, grazing, methane production, rumen fermentation, ruminants, silvopastoral systems, tropical agriculture

Abstract

Background: Supplementation of grazing cattle with native and naturalized forages using silvopastoral systems has been suggested as an affordable strategy to reduce methane production and improve nutrition, diminishing the environmental impact of cattle production. Objective: To evaluate the effect of three tropical forage species in a silvopastoral arrangement on methane production and fermentation parameters using an in vitro ruminal simulation system (RUSITEC). Methods: Four diets were evaluated. The control treatment was a basal diet of colosuana grass (COL; Bothriochloa pertusa), while the other diets consisted of 70% COL complemented with 30% shrub forage from either Leucaena leucocephala (CL), Guazuma ulmifolia (CG), or Crescentia cujete (CT). A randomized complete block design with repeated measurements over time was used. Results: The inclusion of shrub forage did not affect pH, organic matter degradation (OMD) or volatile fatty acids (VFA). The inclusion of shrub forage affected the degradation of structural components. The concentration of N-NH3 increased in the CL diet compared to COL (p<0.05). In general, methane production in terms of mL/day, mL/g DMi, mL/g DMd, and mL/gOMd was reduced for CL compared to COL (p<0.05). Conclusions: Based on these results, inclusion of Leucaena leucocephala, Guazuma ulmifolia or Crescentia cujete on B. pertusa-based diets improves ruminal fermentation parameters and reduces in vitro methane production.

|Abstract
= 910 veces | HTML
= 0 veces| | PDF
= 625 veces|

Downloads

Download data is not yet available.

Author Biographies

Aldo J Ibarra-Rondón, Universidad Popular del Cesar

Grupo de investigación Parasitología Agroecología Milenio, Universidad Popular del Cesar, Valledupar, Colombia
https://orcid.org/0000-0002-9937-4488

Pedro J Fragoso-Castilla, Universidad Popular del Cesar

Grupo de investigación Parasitología Agroecología Milenio, Universidad Popular del Cesar, Valledupar, Colombia
https://orcid.org/0000-0002-3437-8664

Luis A Giraldo-Valderrama, Universidad Nacional de Colombia

Departamento de ciencias agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, Colombia
https://orcid.org/0000-0002-9279-1465

José E Mojica-Rodríguez, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)

Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Agustín Codazzi, Colombia
https://orcid.org/0000-0001-7751-8631

References

Alvear C, Melo W, Guerrero J, Ceron A, Santacruz E. Especies arbóreas y arbustivas con potencial silvopastoril en la zona de bosque muy seco tropical del norte de Nariño y sur del Cauca. Revista Agroforestería Neotropical 2013; (3): 37-46. [May 6, 2020]. URL: http://revistas.ut.edu.co/index.php/agroforesteria/article/view/320

Anantasook N, Wanapat M. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian-Australas J Anim Sci 2012; 25(3): 325. DOI: https://doi.org/10.5713/ajas.2011.11131

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC international. 18th edition. Gaithersburg, US: AOAC International; 2010.

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. 16th edition. Gaithersburg, MD, US: AOAC International; 1999.

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. Gaithersburg, MD, US: AOAC International; 1942.

Apráez JE, Delgado JM, Narváez JP. Composición nutricional, degradación in vitro y potencial de producción de gas, de herbáceas, arbóreas y arbustivas encontradas en el trópico alto de Nariño. Livestock Research for Rural Development 2012; 24(3): 1-11. [March 5, 2020]. URL: http://www.lrrd.org/lrrd24/3/apra24044.htm

Archimède H, Eugène M, Magdeleine CM, Boval M, Martin C, et al. Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 2011; 166: 59-64. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.003

Arce Barboza BA, Peña Quiñones AJ, Cárdenas Rocha EA. Sistema de apoyo a la toma de decisiones para la selección de especies forrajeras (STDF) en función de la oferta ambiental en Colombia. Corpoica cienc tecnol agropecu 2013; 14 (2): 215-229. [April 10, 2020]. URL: http://revistacta.agrosavia.co/index.php/revista/article/view/483/385

Argüello-Rangel J, Mahecha-Ledesma L, Angulo-Arizala J. Arbustivas forrajeras: importancia en las ganaderías de trópico bajo colombiano. Agron Mesoam 2019; 30(3): 899-915. DOI: https://doi.org/10.15517/am.v30i3.35136

Beauchemin KA, McGinn SM, Martinez TF, McAllister TA. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J Anim Sci 2007; 85(8): 1990-1996. DOI: https://doi.org/10.2527/jas.2006-686

Bhatta R, Uyeno Y, Tajima K, Takenaka, A, Yabumoto Y, Nonaka I, Kurihara M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science 2009; 92(11): 5512-5522. DOI: 10.3168/jds.2008-1441

Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 2012; 176(1-4): 78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010

Bodas R, López S, Fernandez M, García-González R, Rodríguez AB, Wallace RJ, González JS. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim Feed Sci Technol 2008; 145(1-4): 245-258. DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.015

Carvajal Salcedo T, Cuesta Peralta A. Conservación y composición nutricional del follaje de sauco (Sambucus nigra). Pastos y Forrajes 2016; 39 (2): 125-132. ISSN 0864-0394. [April 5, 2020]. URL: http://www.fao.org/faostat/es/#homehttp://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942016000200007&lng=es&nrm=iso

Chanthakhoun V, Wanapat M, Wachirapakorn C, Wanapat S. Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livestock Science 2011; 140(1): 17-23. DOI: 10.1016/j.livsci.2011.02.003

Choque Durand H, Huaita Patiño A, Cárdenas Villanueva LA, Ramos Zuñiga R. Efecto de la edad de rebrote en la degradación ruminal del pisonay (Erythrina sp) en el valle interandino de Abancay. Revista de Investigaciones Altoandinas 2018; 20(2): 189-202. http://dx.doi.org/10.18271/ria.2018.363

Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment 2016; 545: 556-568. DOI: 10.1016/j.scitotenv.2015.12.103

Cuartas CA, Naranjo JF, Tarazona AM, Correa GA, Barahona R. Dry matter and nutrient intake and diet composition in Leucaena leucocephala–based intensive silvopastoral systems. Trop. Subtrop. Agroecosyst 2015; 18(3). ISSN: 1870-0462. [March 20, 2020]. URL: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v18i3.2125

Czerkawski JW, Breckenridge G. Design and development of a long-term rumen simulation technique (Rusitec). Br J Nutr 1977: 28(3):371–384. DOI: https://doi.org/10.1079/BJN19770102de Klein CA, Eckard RJ. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust J Exp Agric 2008; 48: 14–20. [ May 15, 2020]. URL: https://www.researchgate.net/publication/248892116

Departamento Administrativo Nacional de Estadística (DANE). Encuesta nacional agropecuaria. Bogotá, Colombia. [January 08, 2020]. URL: http://www.dane.gov.co/index.php/agropecuario/encuesta-nacional-agropecuaria

Detmann E, Paulino MF, Mantovani HC, Valadares Filho SDC, Sampaio CB, de Souza MA, Detmann KS. Parameterization of ruminal fibre degradation in low-quality tropical forage using Michaelis–Menten kinetics. Livestock Science 2009; 126(1): 136-146. DOI: 10.15517/nat.v13i2.39608

Ejelonu BC, Lasisi AA, Olaremu AG, Ejelonu OC. The chemical constituents of calabash (Crescentia cujete). Afr J Biotechnol 2011; 10(84): 19631-19636. DOI: https://doi.org/10.5897/AJB11.1518

Euclides VPB, Macedo MCM, Oliveira MP. Avaliação de diferentes métodos de amostragem (para se estimar o valor nutritivo de forragens) sob pastejo. Revista Brasileira de Zootecnia 1992; 21 (4): 691-702. [April 5, 2020]. URL: https://www.researchgate.net/publication/284210807

Food and Agriculture Organization (FAO). FAOSTAT - Food and Agriculture Database. 2017. [April 15, 2020]. URL: http://www.fao.org/faostat/es/#home

Galindo J, González N, Abdalla AL, Alberto M, Lucas RC, Dos Santos KC, Sarduy L. Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate. Cuban J Agric Sci 2016; 50 (1): 77-87. ISSN 0864-0408. [August 20, 2019]. URL:https://www.researchgate.net/publication/322622853_Effect_of_a_raw_saponin_extract_on_ruminal_microbial_population_and_in_vitro_methane_production_with_star_grass_Cynodon_nlemfuensis_substrate

Galindo J, González N, Marrero Y, Sosa A, Ruiz T, Febles G, Sarduy L. Effect of tropical plant foliage on the control of methane production and in vitro ruminal protozoa population. Cuban J Agric Sci 2014, 48(4): 359-364. Access date: August 8, 2019. URL: https://cjascience.com/index.php/CJAS/article/view/564

Goel G, Makkar HP. Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 2012; 44(4):729-739. DOI: https://doi.org/10.1007/s11250-011-9966-2

Goering HK, Van Soest PJ. Forage fiber analysis. Agriculture Handbook No. 379. Agricultural Research Service – USDA. Washington, D.C, USA. 1970. [April 5, 2020]. URL: https://naldc.nal.usda.gov/download/CAT87209099/PDF

Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Stehfest E. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 2016; 6(5):452–461. DOI: https://doi.org/10.1038/nclimate2925

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Tercera comunicación nacional de cambio climático. "Inventario nacional y departamental de gases de efecto. Bogotá D.C, Colombia. 2016. [April 5, 2020]. URL: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf

Instituto Colombiano Agropecuario (ICA). Censo Pecuario Nacional. 2020. [June 6, 2020]. URL: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018

Intergovernmental Panel on Climate Change (IPCC). Climate Change - Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. editors: Pachauri RK, Meyer LA. Geneva, Switzerland. 2014. [June 15, 2020]. URL: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

Jayanegara A, Wina E, Takahashi J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australasian journal of animal sciences 2014; 27(10): 1426-1435. DOI: 10.5713/ajas.2014.14086

Jayanegara A, Wina E, Soliva CR, Marquardt S, Kreuzer M, Leiber F. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim Feed Sci Technol 2011; 163(2-4): 231-243. https://doi:10.1016/j.anifeedsci.2010.11.009

Javaid A, Sarwar M, Shahzad MA. Ruminal characteristics, blood pH, blood urea nitrogen and nitrogen balance in Nili-ravi Buffalo (Bubalus bubalis) bulls fed diets containing various levels of ruminally degradable protein. Asian-Australas J Anim Sci 2008; 21(1): 51-58. DOI: https://doi.org/10.5713/ajas.2008.70025

Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995, 73(8); 2483-2492. DOI: https://doi.org/10.2527/1995.7382483x

Jouany JP, Morgavi DP. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal 2007; 1(10): 1443-1466. DOI: https://doi.org/10.1017/S1751731107000742

Kamra DN, PatraAK, Chatterjee PN, Kumar R, Agarwal N, Chaudhary LC. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust J Exp Agric 2008, 48(2): 175-178. DOI: https://doi.org/10.1071/EA07268

Khiaosa-Ard R, Metzler-Zebeli BU, Ahmed S, Muro-Reyes A, Deckardt K, Chizzola R, Zebeli Q. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec. J Dairy Sci 2015; 98(4): 2611-2626. DOI: https://doi.org/10.3168/jds.2014-8751

Kobayashi Y. Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation. Asian-Australas J Anim Sci 2010; 23(3): 410-416. DOI: https://doi.org/10.5713/ajas.2010.r.01

La O O, Chongo B, Delgado D, Valenciaga D, Rodríguez Y, Scull I, Ruiz TE, Oramas A. Influencia del Polietilenglicol-3500 en la degradabilidad ruminal de Leucaena leucocephala cv CIAT-7929. Cuban J Agric Sci 2003; 37(3): 273-281. https://www.researchgate.net/publication/289650990

Lee S, Lee S, Cho Y, Kam D, Lee S, Kim C, Seo S. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Animal Feed Science and Technology 2011; 166: 269–274. https://doi.org/10.1016/j.anifeedsci.2011.04.070

Li X, Durmic Z, Liu S, McSweeney CS, Vercoe PE. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec. Anaerobe 2014; 29: 100-107. https://doi.org/10.1016/j.anaerobe.2013.10.008

Li YX, Wijesekara I, Li Y, Kim SK. Phlorotannins as bioactive agents from brown algae. Process Biochemistry 2011; 46(12), 2219-2224. https://doi.org/10.1016/j.procbio.2011.09.015

López J, Tejeda I, Vásquez C, Garza JD, Shimada A. Condensed tannins in humid tropical activity: Part 1. Journal of the Science of Food and Agriculture 2004; 84: 291-294. https://doi.org/10.1002/jsfa.1651

Mao SY, Huo WJ, Zhu WY. Microbiome–metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ microbiol 2016; 18(2): 525-541. https://doi.org/10.1111/1462-2920.12724

Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal 2010; 4:351-365. https://doi.org/10.1017/S1751731109990620

Martínez A, Vicente F. Baizán S, Barhoumi N. Interés agronómico de la inclusión de las habas forrajeras en las raciones de rumiantes en la Cornisa Cantábrica. Afriga 2017, 131:88-96.

Martínez TF, Moyano FJ, Diaz M, Barroso FG, Alarcón FJ. Ruminal degradation of tannin-treated legume meals. J Sci Food Agric 2004; 84(14): 1979-1987. https://doi.org/10.1002/jsfa.1907

McDougall EI. The composition and output of sheep's saliva. Biochemical journal 1948, 43(1): 99-109. https://doi.org/10.1042/bj0430099

McSweeney CS, Kennedy PM, John A. Effect of ingestion of hydrolysable tannins in Terminalia oblongata on digestion in sheep fed Stylosanthes hamata. Australian Journal of Agricultural Research 1988; 39(2): 235-244. https://doi.org/10.1071/AR9880235

Min BR, Pinchak WE, Anderson RC, Fulford JD, Puchala R. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat 1. Journal of animal science 2006; 84(9): 2546-2554. DOI: 10.2527/jas.2005-590

Ministerio de Agricultura y Desarrollo Rural-MADR. Sector Lácteo Colombiano. 2018 [ May 20, 2020]. URL: https://sioc.minagricultura.gov.co/SICLA/Documentos/002%20%20Cifras%20Sectoriales/Cifras%20Sectoriales%20-%202018%20Mayo%20Cadena%20L%C3%A1ctea.pdf.

Mojica-Rodríguez JE, Castro-Rincón E, Carulla-Fornaguera J, Lascano-Aguilar CE. Effect of stage of maturity on fatty acid profile in tropical grasses. Corpoica cienc tecnol agropecu 2017; 18(2): 217-232. https://doi.org/10.21930/rcta.vol18_num2_art:623

Molina IC, Donneys G, Montoya S, Rivera JE, Villegas G, Chará J, Barahona R. La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development 2015; 27(5): 1-8. [August 20, 2017]. URL: http://www.lrrd.org/lrrd27/5/moli27096.html

Molina Botero IC, Cantet JM, Montoya S, Correa Londoño GA, Barahona Rosales R. in vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. CES Medicina Veterinaria y Zootecnia 2013; 8(2): 15-31. ISSN 1900-9607. [August 20, 2017]. URL: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1900-96072013000200002

Murillo Solano J, Barros Henríquez JA, Roncallo Fandiño B, Arrieta Pico G. Requerimientos hídricos de cuatro gramíneas de corte para uso eficiente del agua en el Caribe seco colombiano. Corpoica cienc tecnol agropecu 2014, 15(1): 83-99. [August 20, 2017]. URL: http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a08.pdf

Navarro-Villa A, O´Brien M, López S, Boland TM, O´Kiely P. in vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim Feed Sci Technol 2011; 168: 152-164. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.091

Newbold CJ, McIntosh FM, Williams P, Losa R, Wallace RJ. Effects of a specific blend of essential oil compounds on rumen fermentation. Animal feed science and technology 2004; 114(1-4): 105-112. DOI: 10.1016/j.anifeedsci.2003.12.006

Patra AK, Yu Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol 2015; 6: 1-11. DOI: https://doi.org/10.3389/fmicb.2015.01434

Patra AK. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 2012; 184(4): 1929-1952. DOI: https://doi.org/10.1007/s10661-011-2090-y

Parente FGG, Oliveira AP, Rodrigues CMSC, Junior RGO, Paulo IMM, Nunes XP. Phytochemical screening and antioxidant activity of methanolic fraction from the leaves of Crescentia cujete L. (Bignoniaceae). J Chem Pharm Res 2016; 8(2): 231-236. [August 6, 2017]. URL: http://www.jocpr.com/articles/phytochemical-screening-and-antioxidant-activity-of-methanolic-fraction-from-the-leaves-of-crescentia-cujete-l-bignoniac.pdf

Pereira S, de Araújo S, Guilhon G, Santos L, Junior L. In vitro acaricidal activity of Crescentia cujete L. fruit pulp against Rhipicephalus microplus. Parasitology research 2017; 116(5): 1487-1493. DOI 10.1007/s00436-017-5425-y

Pérez H, de Ariza JS. Evaluación de la hoja del árbol de caulote (Guazuma ulmifolia, Lam), como alimento para humanos. Revista Científica de la Facultad de Ciencias Químicas y Farmacia 2011, 21(2), 27-33. ISSN-e: 2224-5545. [August 20, 2017]. URL: https://dialnet.unirioja.es/servlet/articulo?codigo=5069951

Possenti RA, Franzolin R, Schammas EA, Assumpção JJ, Shiraishi RT, Lima MA. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia 2008; 37(8): 1509-1516. http://dx.doi.org/10.1590/S1516-35982008000800025

Prieto-Manrique E, Vargas-Sánchez JE, Angulo-Arizala J, Mahecha-Ledesma L. Ácidos grasos, fermentación ruminal y producción de metano, de forrajes de silvopasturas intensivas con Leucaena. Agronomía Mesoamericana 2016; 27(2): 337-352. http://dx.doi.org/10.15517/am.v27i2.24386

Ramos-Morales E, de la Fuente G, Duval S, Wehrli C, Bouillon M, Lahmann M, Newbold CJ. Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure. Frontiers in microbiology 2017; 8: 399. https://doi.org/10.3389/fmicb.2017.00399

Rivera JE, Molina IC, Donneys G, Villegas G, Chará J, Barahona R. Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development 2015;27(4). [August 12, 2020]. URL: http://www.lrrd.cipav.org.co/lrrd27/4/rive27076.html

Rodríguez R, Mota M, Castrillo C, Fondevila M. In vitro rumen fermentation of the tropical grass Pennisetum purpureum and mixtures with browse legumes: effects of tannin contents. Journal of animal physiology and animal nutrition 2010; 94(6): 696-705. DOI: 10.1111/j.1439-0396.2010.01001.x.

Rojas S, Pérez JO, Elghandour MM, Cipriano-Salazar M, Avila-Morales B, Camacho-Díaz LM, Soto MC. Effect of polyethylene glycol on in vitro gas production of some non-leguminous forage trees in tropical region of the south of Mexico. Agroforest syst 2015; 89(4): 735-742. https://doi.org/10.1007/s10457-015-9796-8

Roncallo F, Sierra B, Castro AM, Roncallo E, Belisario A, Castro E. Rendimiento de forraje de gramíneas de corte y efecto sobre calidad composicional y producción de leche en el Caribe seco. Corpoica cienc tecnol agropecu 2012; 13(1): 71-78. https://doi.org/10.21930/rcta.vol13_num1_art:242

Sampaio CB, Detmann E, Lazzarini I, Souza MA, Paulino MF, Valadares Filho, SD. Rumen dynamics of neutral detergent fiber in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia 2009; 38(3): 560-569. https://doi.org/10.1590/S1516-35982009000300023

SAS Institute Inc. Ver. 9.1.3 SAS/STAT User’s Guide. Cary, NC, USA. 2002–2003.

Smith P, Haberl H, Popp A, Erb KH, Lauk C, Harper R, Masera O. How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Glob chang biol 2013; 19(8): 2285-2302. https://doi.org/10.1111/gcb.12160

Soltan YA, Morsy AS, Lucas RC, Abdalla AL. Potential of mimosine of Leucaena leucocephala for modulating ruminal nutrient degradability and methanogenesis. Anim Feed Sci Technol 2017; 223, 30-41. https://doi.org/10.1016/j.anifeedsci.2016.11.003

Slyter LL, Satter LD, Dinius DA. Effect of ruminal ammonia concentration on nitrogen utilization by steers. Journal of Animal Science 1979; 48(4): 906-912. https://doi.org/10.2527/jas1979.484906x.

Szumacher-Strabel M, Cieślak A. In Guaxiang Liu, editors, Dietary possibilities to mitigate rumen methane and ammonia production. Greenhouse Gases-Capturing, Utilization and Reduction. Croacia InTech; 2012. p. 199-202. http://cdn.intechopen.com/pdfs/30635.pdf.

Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 2005; 123: 403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037

Tiemann TT, Lascano CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2008; 2(5):790-799. https://doi.org/10.1017/S1751731108001791

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci 1991; 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wallace RJ, McEwan NR, McIntosh FM, Teferedegne B, Newbold CJ. Natural products as manipulators of rumen fermentation. Asian Australasian Journal of Animal Sciences 2002; 15(10):1458-1468. https://doi.org/10.5713/ajas.2002.1458

Wickersham TA, Titgemeyer EC, Cochran RC, Wickersham EE, Gnad DP. Effect of rumen-degradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage 1. J Anim Sci 2008; 86(11): 3079-3088. https://doi.org/10.2527/jas.2007-0325

Whitehouse NL, Olson VM, Schwab CG, Chesbro WR, Cunningham KD, Lykos T. Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids. J Anim Sci 1994; 72(5): 1335-1343. https://doi.org/10.2527/1994.7251335x

Yang CL, Guan LL, Liu JX, Wang JK. Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product. Journal of Zhejiang University-SCIENCE B 2015; 16(8): 709-719. https://link.springer.com/content/pdf/10.1631/jzus.B1500013.pdf

Downloads

Published

2022-10-04

How to Cite

Ibarra-Rondón, A. J., Fragoso-Castilla, P. J., Giraldo-Valderrama, L. A., & Mojica-Rodríguez, J. E. (2022). Effect of tropical forage species in silvopastoral arrangements on methane production and in vitro fermentation parameters in a RUSITEC system. Revista Colombiana De Ciencias Pecuarias, 35(4), 217–232. https://doi.org/10.17533/udea.rccp.v35n4a02

Issue

Section

Original research articles

Similar Articles

You may also start an advanced similarity search for this article.