Biomarcadores cerebrales en tenca (Tinca tinca L.) tras una exposición semiestática al pesticida carbofurano

Autores/as

  • David Hernández-Moreno Universidad de Extremadura
  • María Gil-Molinos Universidad de Extremadura
  • Simone Bertini Universidad de Parma
  • María Prado Míguez Universidad de Extremadura
  • Francisco Soler-Rodríguez Universidad de Extremadura
  • Marcos Pérez-López Universidad de Extremadura

DOI:

https://doi.org/10.17533/udea.rccp.v32n3a08

Palabras clave:

biomarcadores, carbamato, ecotoxicología, peces, peroxidación lipídica, pesticida, pez, tenca, xenobióticos

Resumen

Antecedentes: El ambiente acuático está continuamente contaminado con sustancias químicas tóxicas provenientes de actividades industriales, agrícolas y domésticas. La identificación de diferentes biomarcadores de dicha contaminación es de gran relevancia para determinar el impacto potencial de esos xenobióticos en la salud de los organismos. Objetivo: Estimar la idoneidad de diferentes biomarcadores cerebrales bioquímicos de tenca para evaluar el efecto ambiental de una exposición a diferentes concentraciones del pesticida carbofurano. Método: El presente estudio se centró en los efectos de una exposición a largo plazo (28 días) a diferentes concentraciones (50, 100 y 200 μg/L) del pesticida carbofurano sobre determinados parámetros bioquímicos de la tenca (Tinca tinca L.). Los biomarcadores seleccionados para el control del estrés fueron el malondialdehído (MDA), como indicador de peroxidación lipídica, y el glutatión reducido (GSH). Además, se cuantificó la actividad acetilcolinesterasa (AChE), como biomarcador de efecto sobre el sistema nervioso del pez. Resultados: La actividad AChE se inhibió significativamente en los peces expuestos a todas las concentraciones de carbofurano después de 14 y 21 días de exposición, regresando a los niveles basales tras este periodo en las exposiciones con 50 y 100 μg/L. Así mismo se detectaron descensos significativos de los niveles de MDA tras 14 y 21 días de exposición con 200 μg/L, manteniéndose hasta el final del experimento. Los niveles de GSH descendieron tras 14 y 21 días de exposición con 100 y 200 μg/l; sin embargo, los niveles basales se recuperaron al final del experimento. Conclusión: Los tres parámetros bioquímicos evaluados, pero principalmente la inhibición de la actividad de AChE, podrían usarse como biomarcadores de exposición temprana (menos de 14 días) a bajas dosis de carbofurano en programas de biomonitorización, estando la reducción de MDA también relacionada con exposiciones más prolongadas.

|Resumen
= 369 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 237 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

David Hernández-Moreno, Universidad de Extremadura

Área de Toxicología, Facultad de Veterinaria, Universidad de Extremadura (UEX), Cáceres (España).

María Gil-Molinos, Universidad de Extremadura

Área de Toxicología, Facultad de Veterinaria, Universidad de Extremadura (UEX), Cáceres (España).

Simone Bertini, Universidad de Parma

Departamento de Ciencias Médico-Veterinarias, Universidad de Parma, Italia.

María Prado Míguez, Universidad de Extremadura

Área de Toxicología, Facultad de Veterinaria, Universidad de Extremadura (UEX), Cáceres, España. INBIO (Instituto Universitario de Biotecnología Ganadera y Cinegética), Universidad de Extremadura (UEX).

Francisco Soler-Rodríguez, Universidad de Extremadura

Área de Toxicología, Facultad de Veterinaria, Universidad de Extremadura (UEX),  Cáceres, España. IPROCAR G+C (Instituto Universitario de Carne y Productos Cárnicos), Institutos de investigación, Universidad de Extremadura (UEX).

Marcos Pérez-López, Universidad de Extremadura

Área de Toxicología, Facultad de Veterinaria, Universidad de Extremadura (UEX),  Cáceres, España. INBIO (Instituto Universitario de Biotecnología Ganadera y Cinegética), Universidad de Extremadura (UEX).

Citas

Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit 2004; 10(6): 141-147.

Anderson ME. Glutathione: an overview of biosynthesis and modulation. Chemico-Biol Interact 1998; 111-112: 1-14.APHA/AWWA/WPCF. Métodos Normalizados Para el Análisis de Aguas Potables y Residuales. Madrid (Spain): Ed. Díaz de Santos; 1992.

Ballesteros ML, Wunderlin DA, Bistoni MA. Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicol Environ Saf 2009; 72: 199-205.

Barata C, Solayan A, Porte C. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat Toxicol 2004; 66: 125-139.

Blaber LC, Creasey NH. The mode of recovery of cholinesterase activity in vivo after organophosphorus poisoning. Biochem J 1960; 77: 597-604.

Bradbury SP, Carlson RW, Henry TR, Padilla S, Cowden J. Toxic responses of the fish nervous system. In: Di Giulio RT, Hinton DE, editors. The Toxicology of Fishes. Florida: Taylor & Francis CRC Press; 2008; p. 417-455.

Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.

Bretaud S, Toutant JP, Saglio P. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Saf 2000; 47: 117-124.

Chen L, Yu K, Huang C, Yu L, Zhu B, Lam PK, Lam JC, Zhou B. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae. Environ Sci Technol 2012; 46: 9727-9734.

Clasen B, Leitemperger J, Murussi C, Pretto A, Menezes Ch, Dalabona F, Marchezan E, Adaime M, Zanella R, Loro VL. Carbofuran promotes biochemical changes in carp exposed to rice field and laboratory conditions. Ecotoxicol Environ Saf2014; 101: 77-82.

Council Directive 86/609/EEC (1986) on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes.

Cong NV, Phuong NT, Bayley M. Effects of repeated exposure of diazinon on cholinesterase activity and grow thin snake head fish (Channa striata). Ecotoxicol Environ Saf 2009; 72: 699-703.

Dembélé K, Haudruge E, Gaspar C. Concentration effects of selected insecticides on brain acetylcholinesterase in common carp (Cyprinus carpio L). Ecotoxicol Environ Saf 2000, 45: 49-54.

Di Giulio RT, Habig C, Gallagher EP. Effects of Black Rock Harbor sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. Aquat Toxicol 1993;26: 1-22.

Doyotte A, Cossu C, Jacquin MC, Babut M, Vasseur P.. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat Toxicol 1997; 39: 93-110.

Eissa BL, Salibian A, Ferrari L, Porta P, Borgnia M. Evaluación toxicológica no invasiva del cadmio, modificaciones de biomarcadores conductuales en Cyprinus carpio. Rev Biol Acuát 2003; 20: 56-62.

Ellman GL, Courtney KD, Andres V, Featherstone, RM. A new and rapid colorimetric determination of cholinesterase activity. Biochem Pharmacol 1961; 7: 88-95.

Ensibi C, Hernández-Moreno D, Míguez MP, Daly MN, Soler F, Pérez-López M. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ Toxicol 2014; 29(4): 386-393.

Feng T, Li ZB, Guo XQ, Guo JP. Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defense system and acetylcholinesterase of Tilapia nilotica in vitro. Pest Biochem Physiol 2008; 92: 107-113.

Fernández C, Boleas S, Carbonell G, Tarazona JV, Martin-Otero LE, García MA. Estudio de aplicación de algunos biomarcadores convencionales en doradas (Sparus aurata). Investig Agrar Prod San Animal 1996; 11(3): 235-242.

Ferrari A, Venturino A, De D’angelo AM. Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphosmethyl, parathion and carbaryl exposure in the goldfish (Carassius auratus). Ecotoxicol Environ Saf 2004; 57: 420-425.

Fulton MH, Key PB. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 2001; 20: 37-45.

Gholami-Seyedkolaei SJ, Mirvaghefi A, Farahmand H, Kosari AA, Gholami-Seyedkolaei SJ. Gholami-Seyedkolaei SJ. Optimization of recovery patterns in common carp exposed to roundup using response surface methodology: evaluation of neurotoxicity and genotoxicity effects and biochemical parameters. Ecotoxicol Environ Saf2013; 98(1): 152-161.

Ghosh P, Ghosh S, Bose S, Bhattacharya B. Glutathione depletion in the liver and kidney of Channa punctatus exposed to carbaryl and metacid-50. Sci Total Environ 1993; 134(1): 641-645.

Hernández-Moreno D, Soler F, Miguez MP, Pérez-López M. Hepatic monooxygenase (CYP1A and CYP3A) and UDPGT enzymatic activities as biomarkers for long-term carbofuran exposure in tench (Tinca Tinca L). J Environ Sci Health B 2008; 43: 395- 404.

Hernández-Moreno D, Soler F, Miguez MP, Pérez-López M. Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tinca tinca, to carbofuran or deltamethrin. Sci Total Environ 2010; 408: 4976-83.

Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1976; 74(1): 214-226.

Jaiswal SK, Siddiqi NJ, Sharma B. Carbofuran imbalances the redox status in rat brain, amelioraton by vitamin C. J Biochem Res 2013; 1(4): 36-43.

Kanno S, Matsukawa E, Miura A, Shouji A, Asou K, Ishikawa M. Diethyldithiocarbamate-induced cytotoxicity and apoptosis in leukemia cell lines. Biol Pharm Bull 2003; 26: 964-968.

Kavitha P, Rao JV. Sub-lethal effects of profenofos on tissue-specific antioxidative responses in a Euryhyaline fish, Oreochromismossambicus. Ecotoxicol Environ Saf2009; 72: 1727-1733.

Kristoff G, Guerrero NV, de D’Angelo AM, Cochon, A.C. Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates, Biomphalariaglabrata and Lumbriculus variegatus. Toxicol 2006; 222(3): 185-194.

Lannacone J, Tejada M. Employment of regeneration of freshwater planarian Girardia festae (Borelli, 1898) (Tricladida: dugesiidae) to evaluate toxicity of carbofuran. Neotrop Helminthol 2007; 1(1): 7-13.

Li Z, Lu G, Yang X, Wang C. Single and combined effects of selected pharmaceuticals at sublethal concentrations on multiple biomarkers in Carassius auratus. Ecotoxicol 2011; 21: 353-361.

Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull2001; 42: 656-66.

Moreno-Grau MD. Toxicología Ambiental. Evaluación de riesgo para la salud humana. Madrid: Ed. McGraw Hill/Interamericana; 2003.

OECD. Test 305, Bioconcentration, Flow-through Fish Test’, in OECD Guidelines for Testing of Chemicals. 1996, http://www.oecd-ilibrary.org/environment/test-no-305-bioconcentration-flow-through-fish-test_9789264070462-en (accessed 1 October 2013).

Payne JF, Mathieu A, Melvin W, Fancey LL. Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 1996; 32: 225-231.

Picó Y, Moltó JC, Redondo MJ, Viana E, Mañes J, Font G. Monitoring of the pesticide levels in natural waters of the Valencia community (Spain). Bull Environ Contam Toxicol 1994; 53(2): 230-237.

Rai DK, Sharma RK, Rai PK, Watal G, Sharma B. Role of aqueous extract of Cynodon dactylon in prevention of carbofuran- induced oxidative stress and acetylcholinesterase inhibition in rat brain. Cell Mol Biol 2011;57(1): 135-42.

Ram RN, Singh SK. Carbofuran-induced histopathological and biochemical changes in liver of the teleost fish, Channa punctatus (Bloch). Ecotoxicol Environ Saf 1988; 16(3): 194-201.

Recknagel RO, Glende EA, Walker RL, Lowery K. Lipid peroxidation biochemistry measurement and significance in liver cell injury. In: Plaa GL, Hewitt WR, editors. Toxicology of the Liver. New York: Raven Press; 1982; p. 218-232.

Sarkar A, Ray D, Shrivastava AN. Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicol 2006; 15: 333-340.

Sevgiler Y, Poner P, Durmaz H, Üner N. Effects of N-acetylcysteine on oxidative responses in the liver of fenthion exposed Cyprinus carpio. Pest Biochem Physiol 2007; 87: 248-254.

Sharma Y, Bashir S, Irshad M, Gupta SD, Dogra TD. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicol 2005; 206: 49-57.

Song SB, Xu Y, Zhou BS. Effects of hexachlorobenzene on antioxidant status of live rand brain of common carp (Cyprinus carpio). Chemosphere 2006; 65: 699-706.

Thompson HM. Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicol 1999; 8: 369-384.

Tor ER, Holstege DM, Galey FD. Determination of cholinesterase activity in brain and blood samples using a plate reader. J AOAC Int 1994; 77(5): 1308-1313.

Üner N, Sevgiler Y, Durmaz H, Piner P, Çınkıloğlu E. N-Acetylcysteine provides dose-dependent protection against fenthion toxicity in the brain of Cyprinus carpio L. Comp Biochem Physiol C 2009; 150: 33-38.

Wang C, Guanghua L, Jing C, Peifang W. Sublethal effects of pesticide mixtures on selected biomarkers of Carassius auratus.Environ Toxicol Pharmacol 2009; 28: 414-419.

Zhang J, Shen H, Wang X, Wu J, Xue Y. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 2004; 55: 167-174.

Publicado

2019-07-16

Cómo citar

Hernández-Moreno, D., Gil-Molinos, M., Bertini, S., Prado Míguez, M., Soler-Rodríguez, F., & Pérez-López, M. (2019). Biomarcadores cerebrales en tenca (Tinca tinca L.) tras una exposición semiestática al pesticida carbofurano. Revista Colombiana De Ciencias Pecuarias, 32(3), 232–244. https://doi.org/10.17533/udea.rccp.v32n3a08

Número

Sección

Artículos Originales