Microbiota de Peces de Importancia Económica en Colombia y Hungría: Estrategias Probióticas para el Crecimiento y la Mejora de la Salud

Autores/as

DOI:

https://doi.org/10.17533/udea.rccp.e360455

Palabras clave:

acuicultura, interacciones microbianas del huésped, microbioma, microbiota gastrointestinal, probióticos

Resumen

Antecedentes: La microbiota asociada a los peces desempeña un papel crucial en el mantenimiento de la salud y la mejora de la productividad. Sin embargo, en comparación con los mamíferos, la composición y las funciones de la microbiota de los peces siguen siendo menos comprendidas. Métodos: Se realizó un análisis exhaustivo de la literatura científica con el fin de obtener información sobre diversas interacciones probióticas y especies de peces de importancia económica entre Colombia y Hungría. Resultados: El mejoramiento en el rendimiento del crecimiento se reflejó en mayores tasas específicas de crecimiento, mayor ganancia de peso y una mejor conversión alimenticia, y está estrechamente vinculada a la modulación de la microbiota. Estos beneficios en el crecimiento se acompañan de una mayor respuesta inmune, incluyendo un aumento en la actividad de la lisozima, una regulación positiva de la expresión de componentes del complemento y citocinas (por ejemplo, IL-1β, TNF-α) y una mayor actividad de enzimas antioxidantes (por ejemplo, superóxido dismutasa [SOD], catalasa [CAT]). Varios ensayos también reportan mejoras en la actividad de enzimas digestivas (amilasa, proteasa, lipasa) y en la morfología intestinal. Además, los cambios en la composición de la microbiota intestinal caracterizados por una mayor abundancia de bacterias beneficiosas (por ejemplo, bacterias ácido-lácticas) y una reducción de poblaciones patógenas se correlacionan con la regulación positiva de vías metabólicas involucradas en la utilización de carbohidratos y las defensas antioxidantes. Conclusión: Estos hallazgos destacan la importancia de comprender la microbiota de los peces para diferenciar fenotipos beneficiosos de patogénicos, lo que, en última instancia, allana el camino para estrategias dietéticas innovadoras en la acuicultura.

|Resumen
= 71 veces | PDF (ENGLISH)
= 25 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Nazly Yolieth Martin-Culma, University of Debrecen

University of Debrecen, Doctoral School of Animal Science, Debrecen, Hungary

María Alejandra Gil-Martinez, Universidad Antonio Nariño

Universidad Antonio, Nariño, Faculty of Sciences, Bogotá, Colombia

Camilo Torres-Trujillo, Universidad Antonio Nariño

Universidad Antonio, Nariño, Faculty of Sciences, Bogotá, Colombia

Sandra M Coronado, University de Cartagena

Universidad de Cartagena, Faculty of Medicine, Cartagena de Indias, Colombia

Nelson E Arenas, Universidad de Cartagena

Universidad de Cartagena, Faculty of Medicine, Cartagena de Indias, Colombia.

Péter Bársony , University of Debrecen

University of Debrecen, Department of Animal Nutrition and Food Biotechnology, Debrecen, Hungary.

Citas

Ahmadifar E, Sadegh TH, Dawood MAO, Dadar M, Sheikhzadeh N. The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquac. 2020;516:734656. https://doi.org/10.1016/j.aquaculture.2019.734656

AKI. Lehalászás jelentés 2023. Budapest: Agrárközgazdasági Intézet; 2024. p. 1-36. https://www.aki.gov.hu/termek/lehalaszas-jelentes-2023-ev/

Al‐Dohail MA, Hashim R, Aliyu‐Paiko M. Effects of the probiotic Lactobacillus acidophilus on the growth performance, hematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquac Res. 2009;40(14):1642–1652. https://doi.org/10.1111/j.1365-2109.2009.02265.x

Al‐Hisnawi A, Ringø E, Davies SJ, Waines P, Bradley G, Merrifield DL. First report on the autochthonous gut microbiota of brown trout (Salmo trutta Linnaeus). Aquac Res. 2015;46(12):2962–2971. https://doi.org/10.1111/are.12451

Alishahi M, Dezfuly ZT, Mesbah M, Mohammadian T. Effects of two probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth performance and intestinal lactic acid bacteria of Cyprinus carpio. Iran J Vet Med. 2018;12(3):207-217. https://journals.ut.ac.ir/article_67122_02dddad1cbec7c120b1dd9f5056341ab.pdf

Arenas NE, Melo VM. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infectio. 2018;22(2):110-119. https://doi.org/10.22354/in.v22i2.717

Bahrami Z, Roomiani L, Javadzadeh N, Sary AA, Baboli MJ. Microencapsulation of Lactobacillus plantarum in alginate/chitosan improves immunity, disease resistance, and growth of Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem. 2023;49(5):815–828. https://doi.org/10.1007/s10695-023-01224-2

Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci. 2017;115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

Bereded NK, Abebe GB, Fanta SW, Curto M, Waidbacher H, Meimberg H, Domig KJ. The gut bacterial microbiome of Nile tilapia (Oreochromis niloticus) from lakes across an altitudinal gradient. BMC Microbiol. 2022;22(1):87. https://doi.org/10.1186/s12866-022-02496-z

Bereded NK, Curto M, Domig KJ, Abebe GB, Fanta SW, Waidbacher H, Meimberg H. Metabarcoding analyses of gut microbiota of Nile tilapia (Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms. 2020;8(7):1040. https://doi.org/10.3390/microorganisms8071040

Capetillo-Contreras O, Pérez-Reynoso FD, Zamora-Antuñano MA, Álvarez-Alvarado JM, Rodríguez-Reséndiz J. Artificial intelligence-based aquaculture system for optimizing the quality of water: a systematic analysis. J Mar Sci Eng. 2024;12(1):161. https://doi.org/10.3390/jmse12010161

Chang S, Wang J, Dong C, Jiang Y. Intestinal microbiota signatures of common carp (Cyprinus carpio) after the infection of Aeromonas hydrophila. Aquac Rep. 2023;30:101585. https://doi.org/10.1016/j.aqrep.2023.101585

Côte J, Jacquin L, Veyssière C, Manzi S, Etienne R, Perrault A, Cambon MC, Jean S, White J. Changes in fish skin microbiota along gradients of eutrophication in human-altered rivers. FEMS Microbiol Ecol. 2022;98(1):fiac006. https://doi.org/10.1093/femsec/fiac006

De Vega JJ, Davey RP, Duitama J, Escobar D, Cristancho‐Ardila MA, Etherington GJ, Minotto A, Arenas-Suarez NE, Pineda-Cardenas JD, Correa-Alvarez J, Camargo-Rodriguez AV, Haerty W, Mallarino-Robayo JP, Barreto-Hernandez E, Muñoz-Torres M, Fernandez-Fuentes N, Di Palma F, Colombian Cyberinfrastructure Consortium for Biodiversity. Colombia's cyberinfrastructure for biodiversity: Building data infrastructure in emerging countries to foster socioeconomic growth. Plants People Planet. 2020;2(3):229-236. https://doi.org/10.1002/ppp3.10086

Denev S, Beev G, Staykov Y, Moutafchieva R. Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res. 2009;1:1-29. https://journals.iau.ir/article_673235_fc3c20524391059180cdbf20d0193190.pdf

Dittmann KK, Rasmussen BB, Castex M, Gram L, Bentzon‐Tilia M. The aquaculture microbiome at the center of business creation. Microb Biotechnol. 2017;10(6):1279-1282. https://doi.org/10.1111/1751-7915.12877

Dowidar M, Abd ElAzeem S, Khater AM, Awad Somayah M, Metwally SA. Improvement of growth performance, immunity and disease resistance in Nile tilapia (Oreochromis niloticus) by using dietary probiotics supplementation. J Anim Sci Vet Med. 2018;3(2):35–46. https://doi.org/10.31248/JASVM2018.076

Echeverry-Gallego RA, Martínez-Pachón D, Arenas NE, Franco DC, Moncayo-Lasso A, Vanegas J. Characterization of bacterial diversity in rhizospheric soils, irrigation water, and lettuce crops in municipalities near the Bogotá river, Colombia. Heliyon. 2024;10(16):e35909. https://doi.org/10.1016/j.heliyon.2024.e35909

Eichmiller JJ, Hamilton MJ, Staley C, Sadowsky MJ, Sorensen PW. Environment shapes the fecal microbiome of invasive carp species. Microbiome. 2016;4(44):1–13. https://doi.org/10.1186/s40168-016-0190-1

Fan Y, Wang X, Wang Y, Liu H, Yu X, Li L, Guo P. Potential effects of dietary probiotics with Chinese herb polysaccharides on the growth performance, immunity, disease resistance, and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). J World Aquac Soc. 2021;52(6):1194–1208. https://doi.org/10.1111/jwas.12757

FAO. The State of World Fisheries and Aquaculture 2024: Blue Transformation in action. Rome; 2024. p. 264. https://doi.org/10.4060/cd0683en

Fehér M, Fauszt P, Tolnai E, Fidler G, Pesti-Asbóth G, Stagel A, Szűcs I, Bíró S, Remenyik J, Paholcsek M. Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio. PLoS One. 2021;16(4):e0248537. https://doi.org/10.1371/journal.pone.0248537

Feng J, Chang X, Zhang Y, Yan X, Zhang J, Nie G. Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol. 2019;93:73-81. https://doi.org/10.1016/j.fsi.2019.07.028

Gadhiya A, Katariya S, Khapandi K, Chhatrodiya D. Probiotics as a sustainable alternative to antibiotics in aquaculture: a review of the current state of knowledge. The Microbe. 2025;8:100426. https://doi.org/10.1016/j.microb.2025.100426

Gupta A, Gupta P, Dhawan A. Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol. 2014;41(2):113–119. https://doi.org/10.1016/j.fsi.2014.08.023

Hossain MK, Islam SM, Rafiquzzaman SM, Nuruzzaman M, Hossain MT, Shahjahan M. Multi‐species probiotics enhance growth of Nile tilapia (Oreochromis niloticus) through upgrading gut, liver and muscle health. Aquac Res. 2022;53(16):5710–5719. https://doi.org/10.1111/are.16052

Jasim S, Hafsan H, Saleem H, Kandeel M, Khudhair F, Yasin G, Dadras M. The synergistic effects of the probiotic (Lactobacillus fermentum) and cinnamon, Cinnamomum sp. powder on growth performance, intestinal microbiota, immunity, antioxidant defence and resistance to Yersinia ruckeri infection in the rainbow trout (Oncorhynchus mykiss) under high rearing density. Aquac Res. 2022;53(17):5957-5970. https://doi.org/10.1111/are.16064

Jia J, Gomes-Silva G, Plath M, Pereira BB, UeiraVieira C, Wang Z. Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Ecotoxicol Environ Saf. 2021;211:111955. https://doi.org/10.1016/j.ecoenv.2021.111955

Jia S, Huang Z, Lei Y, Zhang L, Li Y, Luo Y. Application of Illumina-MiSeq high throughput sequencing and culture-dependent techniques for the identification of microbiota of silver carp (Hypophthalmichthys molitrix) treated by tea polyphenols. Food Microbiology. 2018;76:52–61. https://doi.org/10.1016/j.fm.2018.04.010

Jiao F, Zhang L, Limbu S, Yin H, Xie Y, Yang Z, Rong H. A comparison of digestive strategies for fishes with different feeding habits: Digestive enzyme activities, intestinal morphology, and gut microbiota. Ecol Evol. 2023;13(9):e10499. https://doi.org/10.1002/ece3.10499

Jiménez A, Rey Castaño AL, Penagos G, Ariza Botero MF, Figueroa Ramirez J, Iregui-Castro CA. Streptococcus agalactiae: up to date the only pathogenic Streptococcus of cultured tilapias in Colombia. Rev Med Vet Zoot. 2007;54(2):285–294. https://revistas.unal.edu.co/index.php/remevez/article/view/10628

Jules-Bocamdé T, Marie KP, François ZN, Gondal MA, Kausar R. Improvement of the growth performance, innate immunity and disease resistance of Nile tilapia (Oreochromis niloticus) against Vibrio parahaemolyticus 1T1 following dietary application of the probiotic strain Lactobacillus plantarum 1KMT. J Adv Biol Biotechnol. 2020;23(7):27–39. https://doi.org/10.9734/jabb/2020/v23i730167

Kim PS, Shin NR, Lee JB, Kim MS, Whon TW, Hyun DW, Yun JH, Jung MJ, Kim JY, Bae JW. Host habitat is the major determinant of the gut microbiome of fish. Microbiome. 2021;9(1):166. https://doi.org/10.1186/s40168-021-01113-x

Kuebutornye FK, Tang J, Cai J, Yu H, Wang Z, Abarike ED, Afriyie G. In vivo assessment of the probiotic potentials of three host-associated Bacillus species on growth performance, health status and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Aquaculture. 2020;527:735440. https://doi.org/10.1016/j.aquaculture.2020.735440

Lai KP, Lin X, Tam N, Ho JCH, Wong MK, Gu J, Chan TF, Tse WKF. Osmotic stress induces gut microbiota community shift in fish. Environ Microbiol. 2020;22(9):3784–3802. https://doi.org/10.1111/1462-2920.15150

Langi S, Maulu S, Hasimuna OJ, Kaleinasho Kapula V, Tjipute M. Nutritional requirements and effect of culture conditions on the performance of the African catfish (Clarias gariepinus): a review. Cogent Food Agric. 2024;10(1):2302642. https://doi.org/10.1080/23311932.2024.2302642

Lawal MO, Lawal AZ, Adewumi GA, Mudiaga A. Growth, nutrient utilization, hematology and biochemical parameters of African catfish (Clarias gariepinus, Burchell, 1822) fed with varying levels of Bacillus subtilis. Agrosearch. 2019;19(1):13–27. https://doi.org/10.4314/agrosh.v19i1.2

Li H, Zhou Y, Ling H, Luo L, Qi D, Feng L. The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS One. 2019;14(12):e0223428. https://doi.org/10.1371/journal.pone.0223428

Li W, Huang X, Lu X, Jiang B, Liu C, Huang Y, Su Y. Effects of dietary Lactobacillus reuteri on growth performance, nutrient retention, gut health and microbiota of the Nile tilapia (Oreochromis niloticus). Aquac Rep. 2022;26:101275. https://doi.org/10.1016/j.aqrep.2022.101275

Luan Y, Li M, Zhou W, Yao Y, Yang Y, Zhang Z, Ringø E, Olsen RE, Clarke JL, Xie S. The fish microbiota: research progress and potential applications. Engineering. 2023;29:137–146. https://doi.org/10.1016/j.eng.2022.12.011

Magalhaes MGP, Melo MAF, dos Santos Moreira A, Degrave W, Parente TE. Water pollution shifts the soil and fish gut microbiomes increasing the circulation of antibiotic resistance genes in the environment. In: Scherer NM, de Melo-Minardi RC, eds. Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science 13523. Springer, Cham; 2022. p. 140–146. https://doi.org/10.1007/978-3-031-21175-1_15

Mariu A, Chatha AMM, Naz S, Khan MF, Safdar W, Ashraf I. Effect of temperature, pH, salinity and dissolved oxygen on fishes. Journal of Zoology and Systematics. 2023;1(2):1-12. https://doi.org/10.56946/jzs.v1i2.198

Merrifield DL, Bradley G, Baker RTM, Davies SJ. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac Nutr. 2010;16(5):496–503. https://doi.org/10.1111/j.1365-2095.2009.00688.x

Midhun SJ, Arun D, Neethu S, Radhakrishnan EK, Jyothis M. Probiotic Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B combination improved growth performance, enzymatic profile, gene expression and disease resistance in Oreochromis niloticus. Microb Pathog. 2023;174:105951. https://doi.org/10.1016/j.micpath.2022.105951

Minich JJ, Zhu Q, Xu ZZ, Amir A, Ngochera M, Simwaka M, Allen EE, Zidana H, Knight R. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). MicrobiologyOpen. 2018;7(6):e00716. https://doi.org/10.1002/mbo3.716

Mohammadian T, Nasirpour M, Tabandeh MR, Heidary AA, Ghanei-Motlagh R, Hosseini SS. Administrations of autochthonous probiotics altered juvenile rainbow trout (Oncorhynchus mykiss) health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol. 2019;86:269–279. https://doi.org/10.1016/j.fsi.2018.11.052

Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R, Espejo R, Romero J. PCR-TTGE Analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PLoS One. 2012;7(2):e31335. https://doi.org/10.1371/journal.pone.0031335

Nejad AJ, Yazdkhasti M. Effects of multispecies probiotic combination on growth performance, biochemical indices, and nonspecific immune responses in common carp (Cyprinus carpio). Jentashapir J Cell Mol Biol. 2023;14(2):e136669. https://doi.org/10.5812/jjcmb-136669

Nolorbe-Payahua CD, De Freitas AS, Roesch LFW, Zanette J. Environmental contamination alters the intestinal microbial community of the livebearer killifish Phalloceros caudimaculatus. Heliyon. 2020;6(6):e04190. https://doi.org/10.1016/j.heliyon.2020.e04190

Noshair I, Kanwal Z, Jabeen G, Arshad M, Yunus F, Hafeez R, Alomar SY. Assessment of dietary supplementation of Lactobacillus rhamnosus probiotic on growth performance and disease resistance in Oreochromis niloticus. Microorganisms. 2023;11(6):1423. https://doi.org/10.3390/microorganisms11061423

Ofek T, Lalzar M, Laviad-Shitrit S, Izhaki I, Halpern M. Comparative study of intestinal microbiota composition of six edible fish species. Front Microbiol. 2021;12:760266. https://doi.org/10.3389/fmicb.2021.760266

Opasola AS, Fawole O. Growth performance and survival rate of Clarias gariepinus fed Lactobacillus acidophilus-supplemented diets. IOSR-JAVS. 2013;3(6):45–50. https://www.iosrjournals.org/iosr-javs/papers/vol3-issue6/I0364550.pdf

Pandey A, Tyagi A, Khairnar SO. Oral feed-based administration of Lactobacillus plantarum enhances growth, hematological and immunological responses in Cyprinus carpio. Emerg Anim Species. 2022;3:100003. https://doi.org/10.1016/j.eas.2022.100003

Parrado M, Salas MC, Hernández-Arévalo G, Ortega P, Yossa MI. Variedad bacteriana en cultivos piscícolas y su resistencia a antibacterianos. Orinoquia. 2014;18(2):238-246. https://doi.org/10.22579/20112629.382

Putra AN, Bayu Syamsunarno M, Ningrum W, Jumyanah J, Mustahal M. Effect of the administration of probiotic Bacillus NP5 in the rearing media on water quality, growth, and disease resistance of African catfish (Clarias gariepinus). Biodiversitas. 2020;21(6):2566-2575. https://doi.org/10.13057/biodiv/d210629

Reda RM, El-Hady MA, Selim KM, El-Sayed HM. Comparative study of the effects of three predominant gut Bacillus strains and a commercial B. amyloliquefaciens probiotic on the performance of Clarias gariepinus. Fish Shellfish Immunol. 2018;80:416–425. https://doi.org/10.1016/j.fsi.2018.06.031

Ringø E, Harikrishnan R, Soltani M, Ghosh K. The effect of gut microbiota and probiotics on metabolism in fish and shrimp. Animals. 2022;12(21):3016. https://doi.org/10.3390/ani12213016

Shija VM, Amoah K, Cai J. Effect of bacillus probiotics on the immunological responses of Nile tilapia (Oreochromis niloticus): a review. Fishes. 2023;8(7):366. https://doi.org/10.3390/fishes8070366

Tan HY, Chen SW, Hu SY. Improvements in growth performance, immunity, disease resistance, and the gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019;92:265–275. https://doi.org/10.1016/j.fsi.2019.06.027

Tawfik MM, Lorgen-Ritchie M, Król E, McMillan S, Norambuena F, Bolnick DI, Douglas A, Tocher DR, Betancor MB, Martin SAM. Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages. Animal microbiome. 2024;6(1):38. https://doi.org/10.1186/s42523-024-00321-8

Umaru J, Ochokwu I, Agbugui M. Influence of yeast-based commercial probiotic on growth performance, nutrient utilization and body composition of the African catfish (Clarias gariepinus) fingerlings. FUDMA-JAAT. 2021;7(2):155–160. https://jaat.fudutsinma.edu.ng/index.php/jaat/article/view/61/33

Valenzuela-Armenta JA, Díaz-Camacho SP, Cabanillas-Ramos JA, de Jesus Uribe-Beltrán M, de la Cruz MC, Osuna-Ramírez I, Báez-Flores ME. Microbiological analysis of tilapia and water in aquaculture farms from Sinaloa. Biotecnia. 2018;20(1):20–26. https://doi.org/10.18633/biotecnia.v20i1.525

Wang CA, Li F, Wang D, Lu S, Han S, Gu W, Liu H. Enhancing growth and intestinal health in triploid rainbow trout fed a low-fish-meal diet through supplementation with Clostridium butyricum. Fishes. 2024;9(5):178. https://doi.org/10.3390/fishes9050178

Wong S, Rawls JF. Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol. 2012;21(13):3100–3102. https://doi.org/10.1111/j.1365-294X.2012.05646.x

Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF. Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol. 2013;79(16):4974–4984. https://doi.org/10.1128/AEM.00924-13

Yang H, Feng Q, Xia S, Wu Z, Zhang Y. AI-driven aquaculture: A review of technological innovations and their sustainable impacts. Artif Intell Agric. 2025;15(3):508-525. https://doi.org/10.1016/j.aiia.2025.01.012

Zaheri-Abdehvand S, Csorvási É, Bársony P, Komlósi I, Szabó C. Effect of different supplementary diets on growing rate, fat and protein contents of flesh common carp (Cyprinus carpio) fingerlings. J Anim Res Nutr. 2018;3(2):3. https://doi.org/10.21767/2572-5459.100047

Zhou L, Lin K, Gan L, Sun J, Guo C, Liu L, Huang X. Intestinal microbiota of grass carp fed faba beans: a comparative study. Microorganisms. 2019;7(10):465. https://doi.org/10.3390/microorganisms7100465

Descargas

Publicado

2025-10-04

Cómo citar

Martin-Culma, N. Y., Gil-Martinez, M. A., Torres-Trujillo, C., Coronado, S. M., Arenas, N. E., & Bársony , P. (2025). Microbiota de Peces de Importancia Económica en Colombia y Hungría: Estrategias Probióticas para el Crecimiento y la Mejora de la Salud. Revista Colombiana De Ciencias Pecuarias. https://doi.org/10.17533/udea.rccp.e360455

Número

Sección

Manuscritos aceptados