Presença de Chlamydia abortus em amostras de colostro, leite e secreção vaginal de ovelhas
DOI:
https://doi.org/10.17533/udea.rccp.v35n2a04Palavras-chave:
colostro, clamídia, Chlamydia abortus, corrimento vaginal, eliminação vaginal, infecção por clamídia, leite, ovelha, ovino, secreçãoResumo
Antecedentes: A principal via de transmissão da Chlamydia abortus é a ingestão do microrganismo que foi eliminado nas secreções vaginais, membranas placentárias ou abortos que contaminam o meio ambiente e, possivelmente, através do leite e colostro. A eliminação pelas secreções vaginais está bem documentada. No entanto, não há relatos de isolamento e identificação de C. Abortus no colostro ou leite de ovelhas infectadas, por isso é importante verificar se a bactéria pode estar ou não presente nessas secreções, único alimento dos cordeiros. Objetivo: Detectar a presença de C. Abortus no colostro, leite e secreções vaginais de ovelhas com histórico de distúrbios reprodutivos. Métodos: Para isolar e identificar C. Abortus nessas secreções, foram coletados colostro, leite e exsudato vaginal de 66 ovelhas. As amostras foram inoculadas em cultura de células de fibroblastos de camundongo e a presença da bactéria determinada por imunofluorescência direta. Resultados: 19 de 66 amostras de colostro (28,7%), 14 de 66 amostras de leite (21,2%) e 17 de 66 esfregaços vaginais (25,7%) sendo positivos. As 50 amostras positivas para isolamento e detectadas por imunofluorescência, juntamente com as 42 negativas, foram submetidas a qPCR para amplificar um fragmento do gene ompA de C. Abortus. Trinta e oito das 92 amostras processadas por esta técnica foram positivas para C. Abortus. Conclusão: Os resultados do presente estudo demonstraram a presença de C. Abortus em alta proporção no colostro, leite e secreções vaginais de ovelhas infectadas. Este trabalho é o primeiro estudo de campo na literatura científica confirmando a presença de C. Abortus no colostro, o que mostra que a excreção da clamídia por lactogênese pode ocorrer nas primeiras horas após o nascimento.
Downloads
Referências
Barati S, Moori-Bakhtiari N, Najafabadi MG, Momtaz H, Shokuhizadeh L. The role of zoonotic chlamydial agents in ruminants abortion. Iranian J of Microbiol 2017; 9(5):288–294. URL: https://pubmed.ncbi.nlm.nih.gov/29296274/
Castro N, Capote J, Bruckmaier RM, Argüello A. Management effects on colostrogenesis in small ruminants: A review. J Appl Anim Res 2011; 39(2):85–93. DOI: https://doi.org/10.1080/09712119.2011.581625
Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nature Rev Microbiol 2016; 14(6):385–400. DOI: https://doi.org/10.1038/nrmicro.2016.30
Escuder VD, Espinosa MI, Rodríguez JM, Fernández L, Pallás ACR. Effect of HTST and holder pasteurization on the concentration of immunoglobulins, growth factors, and hormones in donor human milk. Front Immunol 2018. 9:2222. DOI: https://doi.org/10.3389/fimmu.2018.02222
Escuder VD, Rodríguez JM, Espinosa MI, Corzo N, Montilla A, García SA, Visitación CM, Fontecha J, Serrano J, Fernández L, Pallás ACR. High-temperature short-time and holder pasteurization of donor milk: impact on milk composition. Life 2021; 11(2):114. DOI: https://doi.org/10.3390/life11020114
Livingstone M, Wheelhouse N, Ensor H, Rocchi M, Maley S, Aitchison K, Wattegedera S, Wilson K, Sait M, Siarkou V, Vretou E, Entrican G, Dagleish M, Longbottom D. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS. PLoS ONE 2017; 12(5):1–19. DOI: https://doi.org/10.1371/journal.pone.0177653
Longbottom D, Coulter LJ. Animal chlamydioses and zoonotic implications. J Comp Pathology 2003; 128(4):217–244. DOI: https://doi.org/10.1053/jcpa.2002.0629
Nietfeld JC. Chlamydial infections in small ruminants. The Veterinary Clinics of North America. Food Anim Practice 2001; 17(2):301–314. DOI: https://doi.org/10.1016/S0749-0720(15)30030-X
Ortega N, Caro M, Gallego C, Murcia-Belmonte A, Alvarez D, del Rio L, Cuello F, Buendía A, Salinas J. Isolation of Chlamydia abortus from a laboratory worker diagnosed with atypical pneumonia. Irish Vet J 2016; 69(8):1-4. DOI: https://doi.org/10.1186/s13620-016-0067-4
Oseikria M, Pellerin J, Rodolakis A, Vorimore F, Laroucau K, Bruyas J, Roux C, Michaud S, Larrat M, Fieni F. Can Chlamydia abortus be transmitted by embryo transfer in goats? Theriogenology 2016 (86): 1482–1488. DOI: http://dx.doi.org/10.1016/j.theriogenology.2016.05.006
Pantchev A, Sting R, Bauerfeind R, Tyczka J, Sachse K. New real-time PCR tests for species-specific detection of Chlamydophila psittaci and Chlamydophila abortus from tissue samples. Vet J 2009; 181(2):145–150. DOI: https://doi.org/10.1016/j.tvjl.2008.02.025
Papp JR, Shewen PE, Gartley CJ. Abortion and subsequent excretion of chlamydiae from the reproductive tract of sheep during estrus. Infect and Immun 1994; 62(9):3786–3792. DOI: https://doi.org/10.1128/iai.62.9.3786-3792.1994
Rocchi MS, Wattegedera S, Meridiani I, Entrican G. Protective adaptive immunity to Chlamydophila abortus infection and control of ovine enzootic abortion (OEA). Vet Microbiol 2009; 135(1–2):112–121. DOI: https://doi.org/10.1016/j.vetmic.2008.09.030
Rodolakis A, Laroucau K. Chlamydiaceae and chlamydial infections in sheep or goats. Vet Microbiol 2015; 181(1–2):107–118. DOI: https://doi.org/10.1016/j.vetmic.2015.07.010
Rojas M, Fort M, Bettermann S, Entrocassi C, Costamagna S, Sachse K, Rodríguez M. Detección de Chlamydia abortus en pérdidas reproductivas de bovinos en la provincial de La Pampa, Argentina. Rev Argent Microbiol 2018; 50 (3):269-274. DOI: https://doi.org/10.1016/j.ram.2017.10.002
Salinas J, Sanchez J, Buendia AJ, Souriau A, Rodolakis A, Bernabé A, Cuello F. The LPS localization might explain the lack of protection of LPS-specific antibodies in abortion-causing Chlamydia psittaci infections. Res Microbiol 1994; 145(8). DOI: https://doi.org/10.1016/0923-2508(94)90078-7
Sambrook J, Fritsch EF, MT. Molecular cloning a laboratory manual, Volumes 1, 2 and 3. 2nd ed. Cold Spring Harbor Laboratory Press; 1989; ISBN:0-87969-309-6. URL: https://is.muni.cz/publication/372112/en/Molecular-Cloning-A-laboratory-Manual/Sambrook-Fritsch-Maniatis
Selim A, Manaa E, Waheed R, Alanazi A. Seroprevalence, associated risk factors analysis and first molecular characterization of Chlamydia abortus among Egyptian sheep 2020; 74. DOI: https://doi.org/10.1016/j.cimid.2020.101600
Stuen S, Longbottom D. Treatment and control of chlamydial and rickettsial infections in sheep and goats. Vet Clin N Am-Food Anim Pract 2011; 27(1): 213–233. DOI: https://doi.org/10.1016/j.cvfa.2010.10.017
Thomas R, Davison HC, Wilsmore AJ. Use of the IDEIA ELISA to detect Chlamydia psittaci (ovis) in material from aborted fetal membranes and milk from ewes affected by ovine enzootic abortion. British Vet J 1990; 146(4):364–367. DOI: https://doi.org/10.1016/S0007-1935(11)80031-X
Wattegedra SR, Livingstone M, Maley S, Rocchi M, Lee S, Pang Y, Wheelhouse NM, Aitchison K, Palarea AJ, Buxton D, Longbottom D, Entrican G. Defining immune correlates during latent and active chlamydial infection in sheep. Vet Res 2020; 51(2):75. DOI: https://doi.org/10.1186/s13567-020-00798-6.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam a RCCP a reimprimir o material nela publicado.
A revista permite que o(s) autor(es) detenham os direitos autorais sem restrições, e permitirá que o(s) autor(es) mantenham os direitos de publicação sem restrições.