Prevalência e causas de deformidades esqueléticas em exemplares juvenis cultivados de Oncorhynchus mykiss
deformidades esqueléticas em exemplares juvenis cultivados de Oncorhynchus mykiss
DOI:
https://doi.org/10.17533/udea.rccp.e359311Palavras-chave:
deformidades esqueléticas, juvenil, Oncorhynchus mykiss, pisciculturaResumo
Enquadramento: O desenvolvimento esquelético e a incidência de deformidades esqueléticas nos peixes estão entre os problemas mais importantes que devem ser resolvidos para aumentar o sucesso da aquacultura. As deformidades esqueléticas reduzem a sobrevivência, o crescimento e a nutrição dos peixes. Objectivo: Neste estudo foram investigadas deformações esqueléticas em juvenis de Oncorhynchus mykiss, a truta mais cultivada em Türkiye. Métodos: Foram visitadas 30 explorações de truticultura e recolhidos e analisados 1.200 indivíduos juvenis. Para determinar as deformações esqueléticas nas amostras recolhidas, as deformações observadas foram divididas em grupos. Os achados patológicos mais comuns nos indivíduos também foram avaliados. Resultados:Como resultado do estudo, a deformação esquelética mais comum foi a compressão (C) com uma taxa de 49,83%. Quando analisado por região, a maior deformação ocorreu na região lordose-cifose da cauda com um índice de 73,17%. Por outro lado, ao analisar os espécimes, detetou-se 61% de lordose. Ao analisar as deformidades dos ossos maxilares, barbatanas e pterigóforos, foram encontradas deformidades dos ossos maxilares com uma taxa mais elevada de 12,08%. O achado patológico mais comum nas amostras foi o distúrbio da natação (37,58%). Outro resultado foi a alteração da taxa de deformação total em função das diferentes temperaturas da água nas explorações. Conclusões: De acordo com os resultados, a maior taxa de deformação foi encontrada com 19,58% no 13°. da aquicultura.
Downloads
Referências
Andrades Ja, Becerra J, Fernández-Llebrez P. Skeletal deformities in larval, juvenile and adult stages of cultured gilthead sea bream (Sparus aurata L.). Aquaculture 1996; 141, 1-11. https://doi.org/10.1016/0044-8486(95)01226-5
Ashaf-Ud-Doulah M, Islam Smm, Zahangir Mm, Islam Ms, Brown C, Shahjahan M. Increased water temperature interrupts embryonic and larval development of Indian major carp rohu Labeo rohita. Aquac Int 2021; 29(2): 711-722. https://doi.org/10.1007/s10499-021-00649-x
Babaheydari Sb, Keyvanshokooh S, Dorafshan S, Johari Sa. Proteomic analysis of skeletal deformity in diploid and triploid rainbow trout (Oncorhynchus mykiss) larvae. Comp Biochem Physiol D Genomics Proteomics 2016; 19(1): 1-7. https://doi.org/10.1016/j.cbd.2016.05.001
Berillis P. Factors that can lead to the development of skeletal deformities in fishes: a review. J of FisheriesSci 2015;9(3):17-23. https://www.researchgate.net/publication/281232467_FACTORS_THAT_CAN_LEAD_TO_THE_DEVELOPMENT_OF_SKELETAL_DEFORMITIES_IN_FISHES_A_REVIEW
Berillis P . Skeletal deformities in seabreams. Understanding the genetic origin can improve production? J of Fisheries Sci 2017; 11, 57-59. https://www.researchgate.net/publication/317116827_Skeletal_Deformities_in_Seabreams_Understanding_the_Genetic_Origin_Can_Improve_Production
Boglione C, Gavaia P,Koumoundouros G. Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Rev Aquac. 2013; 5: S99-S120. https://doi.org/10.1111/raq.12015
Cahu Cl, Zambonino-Infante Jl, Barbosa V. Effect of dietary phospholipid level and phospholipid:neutral lipid value on the developmentof sea bass (Dicentrarchus labrax) larvae fed a compound diet. Br J Nutr 2003; 90(1): 21-28. https://doi.org/10.1079/BJN2003880
Cahu Cl, Zambonino Infante Jl, Takeuchi, T. Nutritional components affecting skeletal development in fish larvae, Aquaculture 2003; 227(1): 245-258, https://doi.org/10.1016/S0044-8486(03)00507-6
Chandra G, Fopp-Bayat D .Trends in aquaculture and conservation of sturgeons: a review of molecular and cytogenetic tools. Rev Aquac 2021; 13:119-137. https://doi.org/10.1111/raq.12466
Chandra G, Saini Vp, Kumar S, Fopp-Bayat D. Deformities in fish: A barrier for responsible aquaculture and sustainable fisheries. Rev Aquac 2024; 16(2): 872‐891. https://doi.org/10.1111/raq.12872
Darias Mj, Mazurais D, Koumoundouros G, Cahu Cl, Zambonino-Infante Jl. Overview of vitamin D and C requirements in fish and their influence on the skeletal system. Aquaculture, 2011; 315(1–2); 49-60. https://doi.org/10.1016/j.aquaculture.2010.12.030
Delaurier A. Evolution and development of the fish jaw skeleton. Wiley Interdiscip Rev Dev Biol 2019; 8(2): e337. https://doi.org/10.1002/wdev.337
Demir T, Mutlu E, Gültepe, N. Bioaccumulation of heavy metals in Capoeta tinca fish and health risk assessment. Revista Cientifica de la Facultade de Veterinaria, 2024; 34(2). https://www.researchgate.net/publication/381210493_Bioaccumulation_of_heavy_metals_in_Capoeta_tinca_fish_and_health_risk_assessment
Eissa Ae, Moustafa M, El-Husseiny, In., Saeid, S., Saleh, O., Borhan, T Identification of some skeletal deformities in freshwater teleostsraised in Egyptian aquaculture. Chemosphere 2009; 77(3):419-42. https://doi.org/10.1016/j.chemosphere.2009.06.050
Fjelldal Pg, Van Der Meeren T, Fraser Twk, Sambraus F, Jawad L, Hansen Tj. Radiological changes during fracture and repair in neural and haemal spines of Atlantic cod (Gadus morhua). Journal of Fish Diseases 2018; 41: 1871–1875. https://doi.org/10.1111/jfd.12899
Fjelldal Pg, Madaro A, Hvas M,Stien Lh, Oppedal F, Fraser, Tw. Skeletal deformities in wild and farmed cleaner fish species used in Atlantic salmon Salmo salar aquaculture. J Fish Biol 2021, 98,1049–1058. https://doi.org/10.1111/jfb.14337
Fraser Twk, Hansen T, Fleming Ms, Fjelldal Pg. The prevalence of vertebral deformities is increased with higher egg incubation temperatures and triploidy in Atlantic salmon Salmo salar L. Journal of Fish Diseases 2015; 38: 75-89. https://doi.org/10.1111/jfd.12206
Fopp-Bayat D, Chandra G, Nitkiewic Z. How cold shock affects ploidy level and early ontogenetic development of the sterlet, A. Ruthenus L. Int J Mol Sci 2022: 23(1): 494. https://doi.org/10.3390/IJMS23010494
Fragkoulis S, Printzi A, Geladakis G. Recovery of haemal lordosis in gilthead seabream (Sparus aurata l.). Sci Rep 2019; 9(1): 9832. https://doi.org/10.1038/s41598-019-46334-1
Georgakopoulou E, Katharios P, Divanach P, Koumoundouros G. Effect of temperature on the development of skeletal deformities in gilthead seabream (Sparus aurata Linnaeus, 1758). Aquaculture 2010; 308:13-19. https://doi.org/10.1016/j.aquaculture.2010.08.006
Güralp H, Pocherniaieva K, Blecha M, Policar T, Pˇseniˇcka M, Saito T. Development, and effect of water temperature on development rate, of pikeperch Sander lucioperca embryos, Theriogenology, 2017; 104:94-104. https://doi.org/10.1016/j.theriogenology.2017.07.050
Han M, Luo M, Yang R, Qin Jq, Ma Z. Impact of temperature on survival and spinal development of golden pompano Trachinotus ovatus (Linnaeus, 1758). Aquaculture Reports, 2020; 18; 100556. https://doi.org/10.1016/j.aqrep.2020.100556
Hernandez, Luis & Hardy, Ronald. (2020). Vitamin A functions and requirements in fish. Aquaculture Research. https://doi.org/10.1111/are.14667
Kim EJ, Park C, Nam YK. Effects of incubation temperature on the embryonic viability and hatching time in Russian sturgeon (Acipenser gueldenstaedtii). Fish Aquat Sci. 2018;21(1):1-8. https://doi.org/10.1186/s41240-018-0101
Kebede B, Habtamu T. Isolation and identification of Edwardsiella tarda from Lake Zeway and Langano, southern Oromia, Ethiopia. Fish. Aquac. J; 2016:7 (4), 184. https://www.longdom.org/open-access/isolation-and-identification-of-emedwardsiella-tardaem-from-lake-zeway-and-langano-southern-oromia-ethiopia-43583.html
Jawad La, Mutlak Fm, Alfaisal Aj. On the record of vertebral deformities in Mastacembelus mastacembelus collected from the lower reaches of Euphrates River, Iraq. Boletim do Instituto de Pesca Sao Paulo, 2016; 42(1): 216–220. https://www.researchgate.net/publication/303916436_On_the_record_of_vertebral_deformities_in_Mastacembelus_mastacembelus_collected_from_the_lower_reaches_of_Euphrates_River_Iraq
Lein I, Helland S, Hjelde K, Bæverfjord G. Temperature effects on malformations in trout (O. Mykiss) (Control of malformations in fish aquaculture.) Science and Practice. Federation of European Aquaculture Producer: 2009; 33-38. https://www.feap.info/wp-content/uploads/2018/06/finefish.pdf
Liang Xp, Li Y, Hou Ym, Qiu H, Zhou Qc. Effect of dietary vitamin C on the growth performance, antioxidant ability and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco Richardson). Aquac Res. 2017; 48:149-160. https://doi.org/10.1111/are.12869
Lv X, Xu S, Liu Q, Wang X, Yang J,Song, Z, Li J. Osteological ontogeny and allometric growth in larval and juvenile turbot (Scophthalmus maximus).Aquaculture, 2019; 498:351–363. https://doi.org/10.1016/j.aquaculture.2018.08.063
Mariasingarayan Y, Danaraj J, Veeraiyan B, Fjelldal Pg, Kannan Karuppiah K, Narayanasamy R . Vertebral column deformity in six species of wild fish at the Coromandel coast, Bay of Bengal India Aquaculture and Fisheries, 2024; 9: 635–641 https://doi.org/10.1016/j.aaf.2022.05.004
Näslund J, Johnsson Jı. Environmental enrichment for fish in captive environments: effects of physical structures and substrates. Fish; 2016: 17(1),1-30. https://doi.org/10.1111/faf.12088
Noble C, Cañon Jones Ha, Damsgård B. Injuries and deformities in fish: their potential impacts upon aquacultural production and welfare. Fish Physiol Biochem. 2012; 38(1): 61-83. https://link.springer.com/article/10.1007/s10695-011-9557-1
Park Jy, Han Kh, Cho, Jk. Early osteological development of larvae and juveniles in red spotted grouper, Epinephelus akaara (Pisces: Serranidae). Dev Reprod 2016; 20(2): 87. https://doi.org/10.12717/DR.2016.20.2.087
Powell Md, Jones M A, Lijalad M. Effects of skeletal deformities on swimming performance and recovery from exhaustive exercise in triploid Atlantic salmon. Diseases of Aquatic Organisms, 2009; 85; 59–66. https://pubmed.ncbi.nlm.nih.gov/19593934/
Rutkayov´A J, Jawad L, Nebes´Aøov´A J, Beneˇs K, Petr´Aˇskov´A E, N¨Aslund J. First records of scale deformities in seven freshwater fish species (Actinopterygii: Percidae and Cyprinidae) collected from three ponds in the Czech Republic. Acta Ichthyologica et Piscatoria, 2016; 46: 225–238. https://doi.org/10.3750/AIP2016.46.3.06
Silverstone Am, Hammell L. Spinal deformities in farmed Atlantic salmon. Can Vet J. 2002; 43(10):782. https://pmc.ncbi.nlm.nih.gov/articles/PMC339614/
Sfakianakis D, Koumoundouros G, Divanach P. Osteological development of the vertebral column and of the fins in Pagellus erythrinus. temperature effect on the developmental plasticity and morpho-anatomical abnormalities. Aquaculture, 2004: 232; (1-4), 407–424. https://doi.org/10.1016/j.aquaculture.2003.08.014
TUİK. Türkiye İstatistik Kurumu 2023, Ankara. https://www.tuik.gov.tr/
Witten Pe, Gil-Martens L, Huysseune A, Takle H, Hjelde K. Towards a classification and an understanding of developmental relationships of vertebral body malformations in Atlantic salmon (Salmo salar L.) Aquaculture, 2009: 295; 6-14. https://doi.org/10.1016/j.aquaculture.2009.06.037
Yıldırım Ş, Çoban D, Süzer C, Fırat, K, Saka Ş. Skeletal deformities of cultured sharpsnout seabream (Diplodus puntazzo) larvae during early life development. Veterinary Journal of Ankara University, 2014; 61, 267–273. https://www.researchgate.net/publication/286131332_Skeletal_deformities_of_cultured_sharpsnout_seabream_Diplodus_puntazzo_larvae_during_early_life_development
Ytteborg E, Baeverfjord G, Torgersen J, Hjelde K, Takle H. Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar). BMC Physiol. 2010: 10(1);1-16. https://doi.org/10.1186/1472-6793-10-12
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam a RCCP a reimprimir o material nela publicado.
A revista permite que o(s) autor(es) detenham os direitos autorais sem restrições, e permitirá que o(s) autor(es) mantenham os direitos de publicação sem restrições.