HPAF de Xanthomonas axonopodis PV. manihotis regula negativamente genes relacionados con metabolismo y defensa en hojas de yuca

Autores/as

  • Paula A. Díaz-Tatis Universidad Nacional de Colombia
  • César A. Trujillo-Beltrán Universidad de los Andes
  • Adriana J. Bernal-Giraldo Universidad de los Andes
  • Camilo E. López-Carrascal Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.acbi.329002

Palabras clave:

HpaF, efecto tipo tres, microarreglo de ADN, yuca, Xam

Resumen

Las bacterias fitopatógenas de los géneros Erwinia, Pantoea, Pseudomonas, Ralstonia y Xanthomonas causan una gran cantidad de enfermedades en diversos cultivos. La base molecular que explica parcialmente la patogenicidad de estas bacterias radica en la translocación de proteínas efectoras hacia el interior de las células hospederas a través del sistema de secreción tipo tres (SST3). Xanthomonas axonopodis pv. manihotis (Xam) es un bacilo gram negativo y es el agente causal de la bacteriosis vascular de la yuca (Manihot esculenta Crantz). Los estudios derivados de la secuenciación del genoma de diversas cepas de Xam han permitido la identificación de hrp-associated F (HpaF) como un efector principal presente en todas las cepas secuenciadas de Latinoamérica, África y Asia. En este trabajo se evaluó la importancia de HpaF en la virulencia de Xam empleando dos estrategias. Primeramente, se pudo determinar a nivel histológico cambios morfológicos en las células de yuca causadas por HpaF. En segundo lugar, se empleó una estrategia de transcriptómica comparativa empleando un microarreglo de ADNc de yuca y ARN obtenido de plantas de yuca inoculadas con cepas de Xam mutadas en hpaF (ΔhpaF) o complementadas (ΔhpaF +hpaF). Los datos obtenidos sugieren que HpaF es un factor de virulencia de Xam ya que regula negativamente genes involucrados en el metabolismo y defensa de la planta.

|Resumen
= 426 veces | PDF
= 156 veces| | HTML
= 27 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alfano JR, Collmer A. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. Journal of Bacteriology,179 (18): 5655-5662.

Arrieta-Ortiz ML, Rodríguez-R LM, Pérez-Quintero AL, Poulin L, Díaz A, Arias-Rojas N, Trujillo C, Restrepo-Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques MA, Lauber E, Lefeuvr P, Medina C, Medina E, Montenegro N, Muñoz-Bodnar A, Noël L, Ortiz-Quiñones JF, Osorio D, Pardo C, Patil PB, Poussier S, Pruvost O, Robène-Soustrade I, Ryan RP, Tabima J, Urrego-Morales OG, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A. 2013. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151. Plos One [Internet]. 8 (11): 1-18. Fecha de acceso: 02 de diciembre de 2013. Disponible en: <http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0079704>.

Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M. Petriello A, Krasileva K, Dahlbeck D, Medina C, Alicai T, Kumar L, Moreira LM, Neto JR, Verdier V, Santana MA, Kositcharoenkul N, Vanderschuren H, Gruissem W, Bernal A, Staskawicz BJ. 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences [Internet]. 109: 1-8. Fecha de acceso: 28 de agosto de 2012. Disponible en: <http://www.pnas.org/content/early/2012/06/12/1208003109>.

Bart R, Chern M, Vega-Sanchez ME, Canlas P, Ronald PC. 2010. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. Plos Genetics [Internet].6 (9): 1-10. Fecha de acceso: 18 de diciembre de 2010. Disponible en:<http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgn.1001123>.

Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323: 101-106.

Bell AA. 1970. 4-hydroxybenzaldehyde and vanillin as toxins formed in leaf wound sap of Phaseolus lunatus. Phytopathology 60: 161-165.

Bernoux M, Ellis JG, Dodds PN. 2011. New insights in plant immunity signaling activation. Current Opinion in Plant Biology, 14: 512-518.

Block A, Alfano JR. 2011. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys. Current Opinion in Microbiology, 14: 1-8.

Bohórquez A. 2011. Aislamiento de secuencias expresadas diferencialmente durante la respuesta de defensa al ataque de la mosca blanca (Aleurotrachelus socialis) en el cultivo de yuca (Manihot esculentaCrantz) mediante genómica funcional [Tesis de doctorado]. [Cali (Colombia)]: Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia. Sede Palmira. p. 236.

Boller T, Felix G. 2009. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60: 379-406.

Ceballos H, Okogbenin E, Pérez JC, Becerra LA, Debouck D. 2010. Cassava. En: Bradshaw JE, editor. Root and tuber crops. New York (United States): SpringerLink. p. 53-96.

Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124: 803-814.

Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323: 95-101.

Curtis J. 1986. Microtecnia vegetal. Mexico D.F. (México): Tritillas. p.106Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews,11: 539-548.

Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S. 2010. Manipulating Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin Accumulation in Rice. Plant Physiology,155: 589-602.

Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martínez de Ilárduya O. 2010. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BioMed Central Plant Biology, 10: 1-19.

Guo M, Tian F, Wamboldt Y, Alfano JR. 2009. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Molecular Plant-Microbe Interactions,22: 1069-1080.

Halkier BA, Gershenzon J. 2006. Biology and Biochemistry of glucosinolates. Annual Review of Plant Biology, 57: 303-333.

Ibdah M, Chen YT, Wilkerson CG, Pichersky E. 2009. An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiology,150: 416-423.

Iyer AS, McCouch S. 2004. The Rice Bacterial Blight Resistance Gene xa5 Encodes a Novel Form of Disease Resistance. Molecular Plant-Microbe Interactions,17: 1348-1354.

Jones JD, Dangl JL. 2006. The plant immune system. Nature,444: 323-329.

Jones L, Ennos AR, Turner SR. 2001. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant Journal,26: 205-216.

Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I. 2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island. Journal of Bacteriology,185: 3155-3166.

Kpemoua K, Boher B, Nicole M, Calatayud P, Geiger JP. 1996. Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Canadian Journal of Microbiology,42: 1131-1143.

López C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V. 2004. A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology,56: 541-554.

López C, Soto M, Restrepo S, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V. 2005. Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology,57: 393-410.

López C, Bernal A. 2012. Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5: 117-126.

Marois E, Van den Ackerveken G, Bonas U. 2002. The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Molecular Plant-Microbe Interactions,15: 637-646.

O’Brien TP, Feder N, McCully ME. 1965. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma,59: 368–373.

Oh HS, Collmer A. 2005. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant Journal,44: 348-359.

Pomar F, Merino F, Barcelo AR. 2002. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma, 220: 17-28.

Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I, Li Z, López-Torrejón G, Díaz I, del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E. 2012. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cellular Microbiology, 14: 669-681.

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati NK, Braisted, JC, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: a free, open-source system for microarray data management and analysis. BioTechniques, 34: 374-378.

Segonzac C, Zipfel C. 2011. Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 14:1-8.

Sugio A, Yang B, Zhu T, White FF. 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proceedings of the National Academy of Sciences,104: 10720-10725.

Tusher VG. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences,98: 5116-5121.

Trujillo C. 2013. Genetic structure of Xanthomonas axonopodispv. manihotis populations in two cassava producer regions in Colombia and characterization of an effector protein [Tesis de doctorado]. [Bogotá (Colombia)]: Departamento de Ciencias Biológicas, Universidad de los Andes. p. 137.

Utsumi Y, Sakurai T, Umemura Y, Ayling S, Ishitani M, Narangajavana J, Sojikul P, Triwitayakorn K, Matsui M, Manabe R, Shinozaki K, Seki M. 2011. RIKEN Cassava Initiative: Establishment of a Cassava Functional Genomics Platform. Tropical Plant Biology, 5:110-116.

Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M. 2012. Transcriptome Analysis Using a High-Density Oligomicroarray under Drought Stress in Various Genotypes of Cassava: An Important Tropical Crop. DNA Research, 19: 335-345.

Vinatzer BA, Teitzel GM, Lee MW, Jelenska J, Hotton S, Fairfax K, Jenrette J, Greenberg JT. 2006. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Molecular Microbiology, 62: 26-44.

Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A. 2007. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. The Plant Journal,51: 32-46.

Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, He YQ, Lu GT, Tang DJ, Vasse J, Arlat M, Tang JL. 2008. AvrACXcc8004, a Type III Effector with a Leucine-Rich Repeat Domain from Xanthomonas campestris Pathovar campestris Confers Avirulence in Vascular Tissues of Arabidopsis thaliana Ecotype Col-0. Journal of Bacteriology,190: 343-355.

Descargas

Publicado

2017-10-02

Cómo citar

Díaz-Tatis, P. A., Trujillo-Beltrán, C. A., Bernal-Giraldo, A. J., & López-Carrascal, C. E. (2017). HPAF de <i>Xanthomonas axonopodis</i> PV. <i>manihotis</i> regula negativamente genes relacionados con metabolismo y defensa en hojas de yuca. Actualidades Biológicas, 37(102), 5–14. https://doi.org/10.17533/udea.acbi.329002

Número

Sección

Artículos completos