HPAF from Xanthomonas axonopodis PV. manihotis down-regulate metabolism and defense genes in cassava

Authors

  • Paula A. Díaz-Tatis Universidad Nacional de Colombia
  • César A. Trujillo-Beltrán Universidad de los Andes
  • Adriana J. Bernal-Giraldo Universidad de los Andes
  • Camilo E. López-Carrascal Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.acbi.329002

Keywords:

cassava, cDNA microarray, HpaF, type three effector, Xam

Abstract

Plant pathogenic bacteria of the genera Erwinia, Pseudomonas, Ralstonia, Pantoea and Xanthomonas cause diverse diseases in various crops. The molecular basis that partially explains the pathogenicity of these bacteria resides in the translocation of effector proteins into the interior of host cells through the type three secretion system (TTSS). Xanthomonas axonopodis pv. manihotis (Xam) is a gram negative bacillus and is the causal agent of cassava (Manihot esculenta Crantz) bacterial blight. Studies derived from the genomic sequencing of different Xam strains has allowed the identification of hrp-associated F (HpaF) as a principal effector present in all sequenced strains from Latin America, Africa, and Asia. In this study we evaluated the importance of HpaF in Xam virulence using two strategies. First, we could determine histologically morphological changes in cassava cells causes by HpaF. Second, a comparative transcriptomic approach was used employing microarrays of cassava ADNc and RNA obtained from cassava plants inoculated with strains of Xam mutated in hpaF (ΔhpaF) or complemented (ΔhpaF +hpaF). The data obtained suggest that HpaF is a virulence factor in Xam since it negatively regulates genes involved in the metabolism and defense of the plant.

|Abstract
= 451 veces | PDF (ESPAÑOL (ESPAÑA))
= 167 veces| | HTML (ESPAÑOL (ESPAÑA))
= 27 veces|

Downloads

References

Alfano JR, Collmer A. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. Journal of Bacteriology,179 (18): 5655-5662.

Arrieta-Ortiz ML, Rodríguez-R LM, Pérez-Quintero AL, Poulin L, Díaz A, Arias-Rojas N, Trujillo C, Restrepo-Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques MA, Lauber E, Lefeuvr P, Medina C, Medina E, Montenegro N, Muñoz-Bodnar A, Noël L, Ortiz-Quiñones JF, Osorio D, Pardo C, Patil PB, Poussier S, Pruvost O, Robène-Soustrade I, Ryan RP, Tabima J, Urrego-Morales OG, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A. 2013. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151. Plos One [Internet]. 8 (11): 1-18. Fecha de acceso: 02 de diciembre de 2013. Disponible en: <http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0079704>.

Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M. Petriello A, Krasileva K, Dahlbeck D, Medina C, Alicai T, Kumar L, Moreira LM, Neto JR, Verdier V, Santana MA, Kositcharoenkul N, Vanderschuren H, Gruissem W, Bernal A, Staskawicz BJ. 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences [Internet]. 109: 1-8. Fecha de acceso: 28 de agosto de 2012. Disponible en: <http://www.pnas.org/content/early/2012/06/12/1208003109>.

Bart R, Chern M, Vega-Sanchez ME, Canlas P, Ronald PC. 2010. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. Plos Genetics [Internet].6 (9): 1-10. Fecha de acceso: 18 de diciembre de 2010. Disponible en:<http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgn.1001123>.

Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323: 101-106.

Bell AA. 1970. 4-hydroxybenzaldehyde and vanillin as toxins formed in leaf wound sap of Phaseolus lunatus. Phytopathology 60: 161-165.

Bernoux M, Ellis JG, Dodds PN. 2011. New insights in plant immunity signaling activation. Current Opinion in Plant Biology, 14: 512-518.

Block A, Alfano JR. 2011. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys. Current Opinion in Microbiology, 14: 1-8.

Bohórquez A. 2011. Aislamiento de secuencias expresadas diferencialmente durante la respuesta de defensa al ataque de la mosca blanca (Aleurotrachelus socialis) en el cultivo de yuca (Manihot esculentaCrantz) mediante genómica funcional [Tesis de doctorado]. [Cali (Colombia)]: Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia. Sede Palmira. p. 236.

Boller T, Felix G. 2009. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60: 379-406.

Ceballos H, Okogbenin E, Pérez JC, Becerra LA, Debouck D. 2010. Cassava. En: Bradshaw JE, editor. Root and tuber crops. New York (United States): SpringerLink. p. 53-96.

Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124: 803-814.

Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323: 95-101.

Curtis J. 1986. Microtecnia vegetal. Mexico D.F. (México): Tritillas. p.106Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews,11: 539-548.

Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S. 2010. Manipulating Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin Accumulation in Rice. Plant Physiology,155: 589-602.

Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martínez de Ilárduya O. 2010. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BioMed Central Plant Biology, 10: 1-19.

Guo M, Tian F, Wamboldt Y, Alfano JR. 2009. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Molecular Plant-Microbe Interactions,22: 1069-1080.

Halkier BA, Gershenzon J. 2006. Biology and Biochemistry of glucosinolates. Annual Review of Plant Biology, 57: 303-333.

Ibdah M, Chen YT, Wilkerson CG, Pichersky E. 2009. An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiology,150: 416-423.

Iyer AS, McCouch S. 2004. The Rice Bacterial Blight Resistance Gene xa5 Encodes a Novel Form of Disease Resistance. Molecular Plant-Microbe Interactions,17: 1348-1354.

Jones JD, Dangl JL. 2006. The plant immune system. Nature,444: 323-329.

Jones L, Ennos AR, Turner SR. 2001. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant Journal,26: 205-216.

Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I. 2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island. Journal of Bacteriology,185: 3155-3166.

Kpemoua K, Boher B, Nicole M, Calatayud P, Geiger JP. 1996. Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Canadian Journal of Microbiology,42: 1131-1143.

López C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V. 2004. A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology,56: 541-554.

López C, Soto M, Restrepo S, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V. 2005. Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology,57: 393-410.

López C, Bernal A. 2012. Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5: 117-126.

Marois E, Van den Ackerveken G, Bonas U. 2002. The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Molecular Plant-Microbe Interactions,15: 637-646.

O’Brien TP, Feder N, McCully ME. 1965. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma,59: 368–373.

Oh HS, Collmer A. 2005. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant Journal,44: 348-359.

Pomar F, Merino F, Barcelo AR. 2002. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma, 220: 17-28.

Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I, Li Z, López-Torrejón G, Díaz I, del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E. 2012. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cellular Microbiology, 14: 669-681.

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati NK, Braisted, JC, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: a free, open-source system for microarray data management and analysis. BioTechniques, 34: 374-378.

Segonzac C, Zipfel C. 2011. Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 14:1-8.

Sugio A, Yang B, Zhu T, White FF. 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proceedings of the National Academy of Sciences,104: 10720-10725.

Tusher VG. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences,98: 5116-5121.

Trujillo C. 2013. Genetic structure of Xanthomonas axonopodispv. manihotis populations in two cassava producer regions in Colombia and characterization of an effector protein [Tesis de doctorado]. [Bogotá (Colombia)]: Departamento de Ciencias Biológicas, Universidad de los Andes. p. 137.

Utsumi Y, Sakurai T, Umemura Y, Ayling S, Ishitani M, Narangajavana J, Sojikul P, Triwitayakorn K, Matsui M, Manabe R, Shinozaki K, Seki M. 2011. RIKEN Cassava Initiative: Establishment of a Cassava Functional Genomics Platform. Tropical Plant Biology, 5:110-116.

Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M. 2012. Transcriptome Analysis Using a High-Density Oligomicroarray under Drought Stress in Various Genotypes of Cassava: An Important Tropical Crop. DNA Research, 19: 335-345.

Vinatzer BA, Teitzel GM, Lee MW, Jelenska J, Hotton S, Fairfax K, Jenrette J, Greenberg JT. 2006. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Molecular Microbiology, 62: 26-44.

Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A. 2007. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. The Plant Journal,51: 32-46.

Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, He YQ, Lu GT, Tang DJ, Vasse J, Arlat M, Tang JL. 2008. AvrACXcc8004, a Type III Effector with a Leucine-Rich Repeat Domain from Xanthomonas campestris Pathovar campestris Confers Avirulence in Vascular Tissues of Arabidopsis thaliana Ecotype Col-0. Journal of Bacteriology,190: 343-355.

Published

2017-10-02

How to Cite

Díaz-Tatis, P. A., Trujillo-Beltrán, C. A., Bernal-Giraldo, A. J., & López-Carrascal, C. E. (2017). HPAF from <i>Xanthomonas axonopodis</i> PV. <i>manihotis</i> down-regulate metabolism and defense genes in cassava. Actualidades Biológicas, 37(102), 5–14. https://doi.org/10.17533/udea.acbi.329002

Issue

Section

Full articles
Crossref
0
Scopus
0