Efecto de los campos eléctricos sobre la producción de biomasa micelial del hongo medicinal Ganoderma lucidum [(W. Curt.: Fr.) P. Karst. (Ganodermataceae)]

  • David A. Ramírez-Cadavid Universidad de Antioquia
  • Andrés R. Galindo-Muñoz Universidad de Antioquia
  • Paola A. Zapata-Ocampo Universidad de Antioquia
  • Diego F. Rojas-Vahos Universidad de Antioquia
  • Carlos Fernández-Ossa Escuela de Ingeniería de Antioquia
  • Lucía Atehortúa-Garcés Universidad de Antioquia
Palabras clave: campo eléctrico, cultivo sumergido, Ganoderma lucidum, producción de biomasa

Resumen

Se evaluó el efecto de los campos eléctricos sobre el crecimiento del hongo Ganoderma lucidum [(W. Curt.: Fr.) P. Karst. Ganodermataceae] bajo condiciones de cultivo sumergido, con el objetivo de optimizar su producción de biomasa. Ganoderma lucidum fue expuesto a tres factores diferentes [tipo de campo eléctrico corriente alterna (AC), corriente continua (DC) y corriente pulsada (IM)]; intensidad del campo [siete intensidades de campo desde 0,0 kV cm-1] (cultivo control) hasta 3,0 kV cm-1; y periodo de estimulación [dependiendo de la fase de crecimiento del hongo, después de la inoculación día 0 (fase lag), día 3 (fase exponencial o log) y día 6 (fase estacionaria)]. Los resultados mostraron que la combinación del campo eléctrico AC, con una intensidad de 1,5 kV cm-1 y aplicado al día 3 presentaron una mejor producción de biomasa con una media de 35,6450 ± 0,6684 g l-1, mientras que la combinación de los tres factores tipo de campo eléctrico DC a una intensidad de 2,5 kV cm-1 y aplicado el día 6 presentaron una menor producción de biomasa con una media de 26,2950 ± 3,9926 g l-1. Los anteriores resultados muestran que según la combinación de los factores evaluados es posible estimular la producción de biomasa del hongo Ganoderma lucidum bajo condiciones de cultivo sumergido mediante la aplicación de campo eléctrico.
|Resumen
= 82 veces | PDF
= 75 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

David A. Ramírez-Cadavid, Universidad de Antioquia
Grupo de Biotecnología, Sede de Investigación Universitaria
Andrés R. Galindo-Muñoz, Universidad de Antioquia
Facultad de Ingeniería. Departamento de ingeniería eléctrica
Paola A. Zapata-Ocampo, Universidad de Antioquia
Grupo de Biotecnología, Sede de Investigación Universitaria
Diego F. Rojas-Vahos, Universidad de Antioquia
Grupo de Biotecnología, Sede de Investigación Universitaria
Carlos Fernández-Ossa, Escuela de Ingeniería de Antioquia
Departamento de Ciencias Básicas
Lucía Atehortúa-Garcés, Universidad de Antioquia
Docente, Instituto de Biología. Grupo de Biotecnología, Sede de Investigación Universitaria

Citas

Akihisa T, Nakamura Y, Tagata M, Tokuda H, Yasukawa K, Uchiyama E, Suzuki T, Kimura Y. 2007. Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chemistry and Biodiversity, 4: 224-231.

Berg H. 1993. Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Bioelectrochemistry and Bioenergetics, 31: 1-25.

Berg H. 1995. Possibilities and problems of low frequency weak electromagnetic fields in cell biology. Bioelectrochemistry and Bioenergetics, 38: 153-159.

Berg H. 1999. Problems of weak electromagnetic field effects in cell biology. Bioelectrochemistry and Bioenergetics, 48: 355-360.

Berger A, Rein D, Kratky E, Monnard I, Hajjaj H, Meirim I, Piguet-Welsch C, Hauser J, Mace K, Niederberger P. 2004. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids in Health and Disease, 3: 2.

Berovic M, Habijanic J, Zore I, Wraber B, Hodzar D, Boh B, Pohleven F. 2003. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. Journal of Biotechnology, 103: 77- Campos D, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros- Zevallos L. 2006. Antioxidant capacity and

secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavon), oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture, 86: 1481-1488.

Cao QZ, Lin ZB. 2004. Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide. Acta Pharmacologica Sinica, 25: 833-838.

Chen HS, Tsai YF, Lin S, Lin CC, Khoo KH, Lin CH, Wong CH. 2004. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorganic and Medicinal Chemistry, 12: 5595-5601.

Cogalniceanu G, Radu M, Fologea D, Moisoi N, Aurelia B. 1998. Stimulation of tobacco shoot regeneration by alternating weak electric field. Bioelectrochemistry and Bioenergetics, 44: 257-260.

Daniel S. 2004. Cellular and physiological effects of Ganoderma lucidum (Reishi). Mini Reviews in Medicinal Chemistry, 4: 873-879.

Dimitrov V, Stoimenova M, Tsoneva I. 2002. Electrically induced concentration fluctuations in Escherichia coli suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209: 201-205.

El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T. 1998. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry, 49: 1651-1657.

Fologea D, Vassu-Dimov T, Stoica I, Csutak O, Radu M. 1998. Increase of Saccharomyces cerevisiae plating efficiency after treatment with bipolar electric pulses. Bioelectrochemistry and Bioenergetics, 46: 285-287.

Gao JJ, Min BS, Ahn EM, Nakamura N, Lee HK, Hattori M. 2002. New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chemical and Pharmaceutical Bulletin, 50: 837-840.

Grosse HH, Bauer E, Berg H. 1988. Electrostimulation during fermentation. Bioelectrochemistry and Bioenergetics, 20: 279-285.

Grosse HH, Bauer E, Berg H. 1988. Electrostimultaion during fermentation. Bioelectrochemistry and Bioenergetics, 20: 279-285.

Hajjaj H, Mace C, Roberts M, Niederberger P, Fay LB. 2005. Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Applied and Environmental Microbiology, 71: 3653-3658.

Hikino H, Ishiyama M, Suzuki Y, Konno C. 1989. Antidiabetic Drugs. 33. Mechanisms of hypoglycemic activity of ganoderan-B - a glycan of Ganoderma lucidum fruit bodies. Planta Medica, 55 (5): 423-428.

Hirotani M, Asaka I, Ino C, Furuya T, Shiro M. 1987. Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum. Phytochemistry, 26: 2797.

Hirotani M, Furuya T, Shiro M. 1985. A ganoderic acid derivative, a highly oxygenated lanostane-type triterpenoid from Ganoderma lucidum. Phytochemistry, 24: 2055-2061.

Hönes I, Pospischil A, Berg H. 1998. Electrostimulation of proliferation of the denitrifying bacterium Pseudomonas stutzeri. Bioelectrochemistry and Bioenergetics, 44: 275-277.

Huie CW, Di X. 2004. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. Journal of Chromatography B, 812: 241-257.

Hülsheger H, Potel J, Niemann EG. 1981. Killing of bacteria with electric pulses of high field strength. Radiation and Environmental Biophysics, 20: 53-65.

Jitsufuchi Y, Yamamoto M. 1987. Research for improvement of Lentinula edodes cultivation: application of electric stimulation for mushroom cultivation. Representative Kyushu Electric Company, # 87004.

Kerns G, Bauer E, Berg H. 1993. Electrostimulation of cellulase fermentation by pulsatile electromagnetically induced currents. Bioelectrochemistry and Bioenergetics, 32: 89-94.

Ko HH, Hung CF, Wang JP, Lin CN. 2008. Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae. Phytochemistry, 69: 234-239.

Lin SB, Li CH, Lee SS, Kan LS. 2003. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2- phase cell cycle arrest. Life Sciences, 72: 2381-2390.

Lin ZB. 2005. Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. Journal of Pharmacological Sciences, 99: 144-153.

Lin ZB, Cao Q Z. 2004. The effect of Ganoderma lucidum polysaccharides peptide on invasion of human lung carcinoma cells in vitro. Clinical and Experimental Pharmacology and Physiology, 31: A233-A233.

Liu J, Shimizu K, Konishi F, Noda K, Kumamoto S, Kurashiki K, Kondo R. 2007. Anti-androgenic activities of the triterpenoids fraction of Ganoderma lucidum. Food Chemistry, 100: 1691-1696.

Liu YH, Tsai CF, Kao MC, Lai YL, Tsai JJ. 2003. Effectiveness of Dp2 nasal therapy for Dp2- induced airway inflammation in mice: using oral Ganoderma lucidum as an immunomodulator. Journal of Microbiology, Immunology and Infection, 36: 236-42.

Mazurek B, Lubicki P, Staroniewicz Z. 1995. Effect of short Hv pulses on Bacteria and Fungi. Ieee Transactions on Dielectrics and Electrical Insulation, 2: 418-425.

Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M. 1998. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chemical and Pharmaceutical Bulletin, 46: 1607-1612.

Murr LE. 1966. Physiological stimulation of plants using delayed and regulated electric field environments. International Journal of Biometeorology, 10: 147-153.

Nakanishi K, Tokuda H, Soga T, Yoshinaga T, Takeda M. 1998. Effect of electric current on growth and alcohol production by yeast cells. Journal of Fermentation and Bioengineering, 85: 250-253.

Ohga S, Cho N, Li Y, Royse D. 2004. Utilization of pulsed power to stimulate fructification of edible mushroom. Mushroom Science Biotechnology, 16: 343-351.

Ohga S, Iida S. 2001a. Effect of electric impulse on fruit body production of Lentinula edobes in the sawdust-based substrate. Mushroom Science Biotechnology, 9: 7-12.

Ohga S, Iida S. 2001b. Effect of electric impulse on sporocarp formation of ectomycorrhizal fungus Laccaria laccata in Japanese red pine plantation. Journal of Forest Research, 6: 37-41.

Ohshima T, Tamura T, Sato M. 2007. Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics, 65: 156-161.

Patocka J. 1999. Anti-inflammatory triterpenoids from mysterious mushroom Ganoderma lucidum and their potential possibility in modern medicine. Acta Medica (Hradec Kralove), 42: 123-125.

Pohl H, Todd G. 1981. Electroculture for crop enhancement by air anions. InternationalJournal of Biometeorology, 25: 309-321.

Shigemitsu T. 1999. Biological and agricultural studies on application of discharge plasma and electromagnetic fields 3. Effects of electrical fields, air ion and corona discharge on plants. Journal of Plasma and Fusion Research Series, 75: 659-665.

Song YS, Kim SH, Sa JH, Jin C, Lim CJ, Park E H. 2004. Anti-angiogenic and inhibitory activity on inducible nitric oxide production of the mushroom Ganoderma lucidum. Journal of Ethnopharmacology, 90: 17-20.

Stanley G, Harvey K, Slivova V, Jiang JH, Sliva D. 2005. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta 1 from prostate cancer cells. Biochemical and

Biophysical Research Communications, 330: 46-52.

Takaki K, Yamazaki N, Mukaigawa S, Fujiwara T, Kofujita H. 2009. Improvement of edible mushroom yield by electric stimulations. Journal of Plasma and Fusion Research Series, 8: 556-559.

Tang W, Gu T, Zhong J J. 2006. Separation of targeted ganoderic acids from Ganoderma lucidum by reversed phase liquid chromatography with ultraviolet and mass spectrometry detections. Biochemical Engineering Journal, 32: 205-210.

Tang Y-J, Zhang W, Zhong JJ. 2009. Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by

medicinal mushroom Ganoderma lucidum. Bioresource Technology, 100: 1852-1859.

Tang YJ, Zhong JJ. 2002. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 31: 20-28.

Tsong TY. 1990. Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions. Annual Review of Biophysics and Biophysical Chemistry, 19: 83-106.

Wagner R, Mitchell DA, Sassaki GL, Amazonas MALdA, Berovic M. 2003. Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technology and Biotechnology, 41: 371-382.

Yang FC, Hsieh C, Chen HM. 2003. Use of stillage grain from a rice-spirit distillery in the solid state fermentation of Ganoderma lucidum. Process Biochemistry, 39: 21-26.

Yang F-C, Yang MJ, Cheng SH. 2009. A novel method to enhance the mycelia production of Ganoderma lucidum in submerged cultures by polymer additives and agitation strategies. Journal of the Taiwan Institute of Chemical Engineers, 40: 148-154.

Yang Q, Wang S, Xie Y, Sun J, Wang J. 2010. HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression. International Journal of Biological Macromolecules, 46 (2): 167-172.

Zapata PA. 2007. Evaluación y desarrollo de un medio de cultivo para la producción de biomasa micelial del hongo medicinal Ganoderma lucidum bajo cultivo sumergido. Medellín (Colombia): Facultad de Ciencias Exactas y Naturales, Instituto de Biología. Universidad de Antioquia. Zhang GL, Wang YH, Ni W, Teng HL, Lin ZB. 2002.

Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World Journal of Gastroenterology, 8: 728-733.

Sección
Artículos completos