Efecto de promotores de crecimiento en B. braunii Kutzing 1849 a partir de diferentes cepas bacterianas

  • Érika J. Obando - Montoya Grupo de Biotecnología, Facultad de Ciencias Exactas, Universidad de Antioquia. https://orcid.org/0000-0001-8682-565X
  • Juan C. Gaviria-García Grupo de Biotecnología, Facultad de Ciencias Exactas, Universidad de Antioquia. https://orcid.org/0000-0001-9563-9891
  • Andrés A. Arbeláez-Pérez Grupo de Biotecnología, Facultad de Ciencias Exactas, Universidad de Antioquia. https://orcid.org/0000-0003-2179-3831
  • Lucía Atehortúa-Garcés Instituto de Biología, Universidad de Antioquia
Palabras clave: Botryococcus braunii, Flavobacterium aquatile, Corynobacterium aquatile, Bacillus subtilis, elicitación microbiana, cocultivo

Resumen

El empleo de bacterias productoras de sustancias promotoras de crecimiento, para mejorar la eficiencia en el crecimiento de las microalgas y así potenciar su actividad en procesos industriales es una práctica que ha tomado fuerza durante los últimos años, de manera análoga a como han sido utilizadas las bacterias para favorecer la producción exitosa de cultivos vegetales. El objetivo de este trabajo fue evaluar la capacidad de las cepas Flavobacterium aquatile, Corynobacterium aquatile y Bacillus subtilis de actuar como promotoras en el crecimiento de la microalga Botryococcus braunii con el fin de mejorar su velocidad de crecimiento y optimizar los proceso derivados de su cultivoEste estudio muestra que las bacterias evaluadas tienen la capacidad de aumentar hasta 1,7 veces el crecimiento de B. braunii y esta capacidad promotora continúa presente en preparaciones de lisados celulares procedentes de estas mismas cepas bacterianas.

|Resumen
= 115 veces | PDF
= 80 veces| HTML
= 8 veces|

Descargas

La descarga de datos todavía no está disponible.

Citas

Bainbridge BW. 2000. Microbiological Techniques for Molecular Biology: Bacteria and Phages. In Brown TA editors. Essential Molecular Biology: A Practical Approach, 2nd ed. London: Oxford University Press, p. 21–54. doi:10.1016/0962-8924(92)90251-H.

Barer MR, Harwood CR. 1999. Bacterial viability and culturability. Advances in Microbial Physiology, 41: 93–137. doi:10.1016/S0065-2911(08)60166-6.

Britton MT, Escobar MA, Dandekar AM. 2008. The Oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In Tzfira T, Citovsky V, editors. Agrobacterium: from Biology to Biotechnology. New York (USA), Springer. p 524–63. doi:10.1007/978-0-387-72290-0.

Cheirsilp B, Suwannarat W, Niyomdecha R. 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology, 28 (4): 362–368. doi:10.1016/j.nbt.2011.01.004.

Chirac C, Casadevall E, Largeau C, Metzger P. 1985. Bacterial influence upon growth and hydrocarbon production of the green alga

Botryococcus braunii. Journal of Phycology, 21 (3): 380–387. doi:10.1111/j.0022-3646.1985.00380.x.

Chohnan S, Furukawa H, Fujio T, Nishihara H, Takamura Y. 1997. Changes in the Size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Applied and Environmental Microbiology, 63 (2): 553–560. PMID: 9023936.

Chowdappa P, Mohan Kumar SP. Jyothi Lakshmi M, Upreti KK. 2013.

Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65 (1): 109-117. doi:10.1016/j.biocontrol.2012.11.009.

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B12 through a symbiotic relationship with Bacteria. Nature, 438 (7064): 90–93. doi:10.1038/nature04056.

Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA. 2005. Effect of media and culture conditions on growth and hydrocarbon

production by Botryococcus Braunii. Process Biochemistry, 40 (9): 3125–3131. doi:10.1016/j.procbio.2005.03.006.

De-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ. 2002. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology, 48 (6): 514–521. doi:10.1139/W02-051.

De-Bashan LE, Antoun H, Bashan Y. 2008. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum Spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44 (4): 938–947. doi:10.1111/j.15298817.2008.00533.x.

Einset IW, Skoog FK. 1977. Isolation and identification of ribosylcis zeatin from transfer RNA of Corynebactrium fascians. Biochemical and Biophysical Research Communications, 79 (4): 1117–1121. doi:10.1016/j.bbrc.2014.04.125.

Gaurav V. 2011. Flow cytometry of cultured plant cells for characterization of culture heterogeneity and cell sorting applications. PhD Dissertations. Massachusetts: University of Massachusetts. p. 149. http://scholarworks.umass.edu/open_access_dissertations/370.

Greene EM. 1980. Cytokinin production by microorganisms. The Botanical Review, 46 (1): 25–74. doi:10.1007/BF02860866. López-Valdez F, Fernández-Luqueño F, Ceballos-Ramírez JM, Marsch R, Olalde-Portugal V, Dendooven L. 2011. A strain of Bacillus subtilis stimulates sunflower growth (Helianthus Annuus L.) temporarily. Scientia Horticulturae, 128 (4): 499–505. doi:10.1016/j.scienta.2011.02.006.

Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42 (6): 565–572. doi:10.1016/jplaphy.2004.05.009.

Nie Lin, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry, 40 (4): 355–361. doi:10.1016/S0981-9428(02)01375-X.

Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA. 2007. Effect of salinity on growth of green Alga Botryococcus braunii

and its constituents. Bioresource Technology, 98 (3): 560–564. doi:10.1016/j.biortech.2006.02.007.

Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17 (4-5): 319–339. doi:10.1016/S0734-9750(99)00014-2.

Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. 2011. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 29 (6): 896–907 doi:10.1016/j.biotechadv.2011.07.009.

Tanoi T, Kawachi M, Watanabe MM. 2011. Effects of carbon source on growth and morphology of Botryococcus braunii. Journal of Applied Phycology, 23 (1): 25–33. doi:10.1007/s10811-0109528-4.

Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG. 2013. The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella Sp.: A review. Journal of Plant Growth Regulation, 32 (2): 417–428.doi:10.1007/s00344-012-9302-8.

Torres M, Trujillo D, Arahana VS. 2010. Cultivo in vitro del mortiño

(Vaccinium floribundum Kunth). Bachelor Thesis. Quito: Universidad San Francisco de Quito. p. 57. Metadata.dc.identifier: SB 386 .M6 T78 2008.

Wada M, Yoshizumi A, Nakamori S, Shimizu S. 1999. Purification and characterization of monovalent cation-activated levodione reductase from Corynebacterium aquaticum M-13. Applied and Environmental Microbiology, 65 (10): 4399–4403. PMID:10508066.

Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov AK. 2006. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39 (4): 323–328. doi:10.1080/03235400600655347.

Zablotowicz RM, Tipping EM, Lifshitz R, Kloepper JW. 1991. Plant growth promotion mediated by bacterial Rhizosphere colonizers. The Rhizosphere and Plant Growth Beltsville Symposia in Agricultural Research, 14: 315–326. doi:10.1007/978-94-0113336-4_70.

Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus Braunii. Biomass and Bioenergy, 35 (5): 1710-1715. doi:10.1016/j.biombioe.2011.01.002.

Publicado
2017-09-21
Cómo citar
Obando - Montoya Érika J., Gaviria-García J. C., Arbeláez-Pérez A. A., & Atehortúa-Garcés L. (2017). Efecto de promotores de crecimiento en <i>B. braunii</i&gt; Kutzing 1849 a partir de diferentes cepas bacterianas. Actualidades Biológicas, 39(106), 21-28. https://doi.org/10.17533/udea.acbi.v39n106a02
Sección
Artículos completos