Growth promoter effect on the Botryococcus braunii Kutzing 1849 culture by several different bacterial strains
DOI:
https://doi.org/10.17533/udea.acbi.v39n106a02Keywords:
Botryococcus braunii, Flavobacterium aquatile, Corynobacterium aquatile, Bacillus subtilis, microbial elicitation, co-cultivationAbstract
There are several strategies to improve the growth of microalgae in industrial processes. In recent years, one of them has gained strength to achieve this goal: the co-culture with bacteria. Using growth-promoting substances, producer bacteria enhance microalgae biology activity, similar to how they have been used to promote the successful production of crops. The aim of this study was to evaluate the promoter capacity of strains Bacillus subtilis, Corynebacterium aquatile and Flavobacterium aquatile, evaluate their ability to improve the growth rate of microalgae Botryococcus braunii and to optimize the process derived from its cultivation. This study showed that the tested bacteria were able to increase up to 1.7 times the B. braunii growth rate and this promoting ability remained present in cell lysate preparations from the same bacterial strains.
Downloads
References
Bainbridge BW. 2000. Microbiological Techniques for Molecular Biology: Bacteria and Phages. In Brown TA editors. Essential Molecular Biology: A Practical Approach, 2nd ed. London: Oxford University Press, p. 21–54. doi:10.1016/0962-8924(92)90251-H.
Barer MR, Harwood CR. 1999. Bacterial viability and culturability. Advances in Microbial Physiology, 41: 93–137. doi:10.1016/S0065-2911(08)60166-6.
Britton MT, Escobar MA, Dandekar AM. 2008. The Oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In Tzfira T, Citovsky V, editors. Agrobacterium: from Biology to Biotechnology. New York (USA), Springer. p 524–63. doi:10.1007/978-0-387-72290-0.
Cheirsilp B, Suwannarat W, Niyomdecha R. 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology, 28 (4): 362–368. doi:10.1016/j.nbt.2011.01.004.
Chirac C, Casadevall E, Largeau C, Metzger P. 1985. Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii. Journal of Phycology, 21 (3): 380–387. doi:10.1111/j.0022-3646.1985.00380.x.
Chohnan S, Furukawa H, Fujio T, Nishihara H, Takamura Y. 1997. Changes in the Size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Applied and Environmental Microbiology, 63 (2): 553–560. PMID: 9023936.
Chowdappa P, Mohan Kumar SP. Jyothi Lakshmi M, Upreti KK. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65 (1): 109-117. doi:10.1016/j.biocontrol.2012.11.009.
Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B12 through a symbiotic relationship with Bacteria. Nature, 438 (7064): 90–93. doi:10.1038/nature04056.
Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA. 2005. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus Braunii. Process Biochemistry, 40 (9): 3125–3131. doi:10.1016/j.procbio.2005.03.006.
De-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ. 2002. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology, 48 (6): 514–521. doi:10.1139/W02-051.
De-Bashan LE, Antoun H, Bashan Y. 2008. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum Spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44 (4): 938–947. doi:10.1111/j.15298817.2008.00533.x.
Einset IW, Skoog FK. 1977. Isolation and identification of ribosylcis zeatin from transfer RNA of Corynebactrium fascians. Biochemical and Biophysical Research Communications, 79 (4): 1117–1121. doi:10.1016/j.bbrc.2014.04.125.
Gaurav V. 2011. Flow cytometry of cultured plant cells for characterization of culture heterogeneity and cell sorting applications. PhD Dissertations. Massachusetts: University of Massachusetts. p. 149. http://scholarworks.umass.edu/open_access_dissertations/370.
Greene EM. 1980. Cytokinin production by microorganisms. The Botanical Review, 46 (1): 25–74. doi:10.1007/BF02860866.
López-Valdez F, Fernández-Luqueño F, Ceballos-Ramírez JM, Marsch R, Olalde-Portugal V, Dendooven L. 2011. A strain of Bacillus subtilis stimulates sunflower growth (Helianthus Annuus L.) temporarily. Scientia Horticulturae, 128 (4): 499–505. doi:10.1016/j.scienta.2011.02.006.
Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42 (6): 565–572. doi:10.1016/jplaphy.2004.05.009.
Nie Lin, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry, 40 (4): 355–361. doi:10.1016/S0981-9428(02)01375-X.
Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA. 2007. Effect of salinity on growth of green Alga Botryococcus braunii and its constituents. Bioresource Technology, 98 (3): 560–564. doi:10.1016/j.biortech.2006.02.007.
Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17 (4-5): 319–339. doi:10.1016/S0734-9750(99)00014-2.
Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. 2011. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 29 (6): 896–907 doi:10.1016/j.biotechadv.2011.07.009.
Tanoi T, Kawachi M, Watanabe MM. 2011. Effects of carbon source on growth and morphology of Botryococcus braunii. Journal of Applied Phycology, 23 (1): 25–33. doi:10.1007/s10811-0109528-4.
Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG. 2013. The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella Sp.: A review. Journal of Plant Growth Regulation, 32 (2): 417–428.doi:10.1007/s00344-012-9302-8.
Torres M, Trujillo D, Arahana VS. 2010. Cultivo in vitro del mortiño (Vaccinium floribundum Kunth). Bachelor Thesis. Quito: Universidad San Francisco de Quito. p. 57. Metadata.dc.identifier: SB 386 .M6 T78 2008.
Wada M, Yoshizumi A, Nakamori S, Shimizu S. 1999. Purification and characterization of monovalent cation-activated levodione reductase from Corynebacterium aquaticum M-13. Applied and Environmental Microbiology, 65 (10): 4399–4403. PMID:10508066.
Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov AK. 2006. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39 (4): 323–328. doi:10.1080/03235400600655347.
Zablotowicz RM, Tipping EM, Lifshitz R, Kloepper JW. 1991. Plant growth promotion mediated by bacterial Rhizosphere colonizers. The Rhizosphere and Plant Growth Beltsville Symposia in Agricultural Research, 14: 315–326. doi:10.1007/978-94-0113336-4_70.
Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus Braunii. Biomass and Bioenergy, 35 (5): 1710-1715. doi:10.1016/j.biombioe.2011.01.002.
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Actualidades Biológicas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.