Nuevas rutas de permeabilidad en Plasmodium falciparum: consideraciones como blanco farmacológico y avances de los potenciales inhibidores

  • Yeison Castañeda-Agudelo Universidad de Antioquia, Medellin, Colombia
  • Adriana Pabón-Vidal Universidad de Antioquia, Medellin, Colombia
Palabras clave: NPP, Plasmodium, malaria, antimaláricos, eritrocito

Resumen

Con base en la persistencia de los casos de malaria, dados por múltiples razones, entre las cuales se encuentra la resistencia de Plasmodium falciparum a los antimálaricos establecidos para su tratamiento, surge la necesidad de encontrar nuevos compuestos antimaláricos frente a otros blancos terapéuticos. En vista de ello, las Nuevas Rutas de Permeabilidad (NPP) han sido un objetivo promisorio y a partir de su descubrimiento, se han realizado diversos estudios enfocados en comprender su mecanismo y los componentes utilizados para el transporte de solutos y otras moléculas a través de la membrana del eritrocito. El objetivo de esta revisión de tema es presentar una recopilación de los estudios más significativos realizados en torno a las NPP. Para ello, se revisó la literatura para conocer el estado del desarrollo de las investigaciones referentes al tema, consultando bases de datos electrónicas y combinando los descriptores o palabras clave: (NPP AND malaria, AND Plasmodium falciparum AND inhibitors), además, se realizaron búsquedas secundarias en las listas de referencias bibliográficas de los artículos identificados. Luego de revisar los artículos de la literatura publicados entre los años 1980 y 2019, se concluye que muchos estudios han sido dedicados a la búsqueda de inhibidores de esta vía con fines terapéuticos y hay gran cantidad de moléculas candidatas como el híbrido MA-DFO y las diaminidas que han mostrado actividad en modelos de malaria tanto in vitro como in vivo.

|Resumen
= 157 veces | PDF
= 116 veces|

Descargas

La descarga de datos todavía no está disponible.

Citas

Alkhalil, A., Cohn, J., Wagner, M., Cabrera, J., Rajapandi, T., & Desai, S. (2004). Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood Journal, 104(13), 4279–86. https://doi.org/10.1182/blood-2004-05-2047

Bannister, L., & Mitchell, G. (2003). The ins, outs, and roundabouts of malaria. Trends in Parasitology, 19(5), 209–13. https://doi.org/10.1016/s1471-4922(03)00086-2

Baumeister, S., Endermann, T., Charpian, S., Nyalwidhe, J., Huber, S., Lingelbach, K., Lang, F., & Kirk, K. (2003). A biotin derivative blocks parasite induced novel permeation pathways in Plasmodium falciparum-infected erythrocytes. Molecular and Biochemical Parasitology, 132(1), 35–45. https://doi.org/10.1016/j.molbiopara.2003.08.003

Baumeister, S., Gangopadhyay, P., Repnik, U., & Lingelbach, K. (2015). Novel insights into red blood cell physiology using parasites as tools. European Journal of Cell Biology, 94(7–9), 332–339. https://doi.org/10.1016/j.ejcb.2015.05.007

Biagini, G. A., Pasini, E. M., Hughes, R., Koning, H. P. De, Vial, H. J., Ward, S. A., & Bray, P. G. (2004). Characterization of the choline carrier of. Blood, 104(10), 3372–3377. https://doi.org/10.1182/blood-2004-03-1084.Supported

Blodgett, D. M., & Carruthers, A. (2004). Conventional transport assays underestimate sugar transport rates in human red cells. Blood Cells, Molecules, and Diseases, 32(3), 401–407. https://doi.org/10.1016/j.bcmd.2004.01.015

Boddey, J. A., Carvalho, T. G., Hodder, A. N., Sargeant, T. J., Sleebs, B. E., Marapana, D., Lopaticki, S., Nebl, T., & Cowman, A. F. (2013). Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic, 14(5), 532–550. https://doi.org/10.1111/tra.12053

Bowlin, T. L., Lyko, B., Nguyen, S. T., Peet, N. P., Butler, M. M., Dolinta, K., & Desai, S. A. (2012). Solute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisition. Molecular Pharmacology, 82(6), 1104–1114. https://doi.org/10.1124/mol.112.081224

Brain, M. C., Pihl, C., Robertson, L., & Brown, C. B. (2004). Evidence for a mechanosensitive calcium influx into red cells. Blood Cells, Molecules, and Diseases, 32(3), 349–352. https://doi.org/10.1016/j.bcmd.2004.01.005

Bray, P. G., DeKoning, H. P., Stocks, P. A., Stead, A. M. W., Edwards, I. G., Elford, B. C., & Ward, S. A. (2001). Diamidine compounds: Selective uptake and targeting in Plasmodium falciparum. Molecular Pharmacology, 59(5), 1298–1306. https://doi.org/10.1124/mol.59.5.1298

Cabantchik, Z. I., Shanzer, A., Mester, B., Libman, J., Loyevsky, M., & Lytton, S. D. (1993). The antimalarial action of deferral involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. Journal of Clinical Investigation, 91(1), 218–224. https://doi.org/10.1172/jci116174

Chassaigne, J. A. (2001). Malaria y fármacos antimaláricos. Revista de la Sociedad Venezolana de Microbiología, 21(2), 85–88. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562001000200017

Cobbold, S. A., Martin, R. E., & Kirk, K. (2010). Methionine transport in the malaria parasite Plasmodium falciparum. International Journal for Parasitology, 41(1), 125–135. https://doi.org/10.1016/j.ijpara.2010.09.001

Cohn J. V., Alkhalil A., Wagner M. A., Rajapandi T., & Desai S. A. (2003). Extracellular lysines on the plasmodial surface anion channel involved in Na+ exclusion. Molecular and Biochemical Parasitology, 132(1), 27–34. https://doi.org/10.1016/j.molbiopara.2003.08.001

Counihan, N. A., Chisholm, S. A., Bullen, H. E., Srivastava, A., Sanders, P. R., Jonsdottir, T. K., Weiss, G. E., Ghosh, S., Crabb, B.S., Creek, D. J., Gilson, P. R., De Koning-Ward, T. F. (2017). Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. ELife, 6, 1–31. https://doi.org/10.7554/eLife.23217

Decherf , G., Egée, S., Staines, H. M., Ellory, J. C., & Thomas, S. L. (2004). Anionic channels in malaria-infected human red blood cells. Blood Cells, Molecules, and Diseases, 32(3), 366–371. https://doi.org/10.1016/j.bcmd.2004.01.008

Dunham, P. B. (2004). Cell shrinkage activates Na+/H+ exchange in dog red cells by relieving inhibition of exchange by Na+ in isotonic medium. Blood Cells, Molecules, and Diseases, 32(3), 389–393. https://doi.org/10.1016/j.bcmd.2004.01.012

Duranton, C., Huber, S. M., Tanneur, V., Brand, V. B., Akkaya, C., Shumilina, E. V., Lang, F. (2004). Organic osmolyte permeabilities of the Malaria - induced anion conductances in human erythrocytes. The Journal of General Physiology, 123(4), 417–426. https://doi.org/10.1085/jgp.200308919

Elsworth, B., Matthews, K., Nie, C. Q., Kalanon, M., Charnaud, S. C., Sanders, P. R., De Koning-Ward, T. F. (2014). PTEX is an essential nexus for protein export in malaria parasites. Nature, 511(7511), 587–591. https://doi.org/10.1038/nature13555

Gazdik, M., Jarman, K. E., O’Neill, M. T., Hodder, A. N., Lowes, K. N., Jousset Sabroux, H., Sleebs, B. E. (2016). Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorganic and Medicinal Chemistry, 24(9), 1993–2010. https://doi.org/10.1016/j.bmc.2016.03.027

Gilson, P. R., Chisholm, S. A., Crabb, B. S., & de Koning-Ward, T. F. (2017). Host cell remodelling in malaria parasites: a new pool of potential drug targets. International Journal for Parasitology, 47(2–3), 119–127. https://doi.org/10.1016/j.ijpara.2016.06.001

Gilson, P. R., Cobbold, S. A., Elsworth, B., Crabb, B. S., Nie, C. Q., McConville, M. J., & Dickerman, B. K. (2016). Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Scientific Reports, 6(1), 1–15. https://doi.org/10.1038/srep37502

Ginsburg, H., Krugliak, M., Eidelman, O., & Cabantchik, Z. I. (1983). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology, 8(2), 177–190. https://doi.org/10.1016/0166-6851(83)90008-7

Gupta, A., Balabaskaran-nina, P., Nguitragool, W., Saggu, G. S., Schureck, M. A., & Desai, A. (2018). CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane. mBio, 9(3), 1–18. https://doi.org/10.1128/mBio.02293-17

Helms, J. B., Arnett, K. L., Gatto, C., & Milanick, M. A. (2004). Bretylium, an organic quaternary amine, inhibits the Na, K-ATPase by binding to the extracellular K-site. Blood Cells, Molecules, and Diseases, 32(3), 394–400. https://doi.org/10.1016/j.bcmd.2004.01.013

Huber, S. M., Lang, C., Lang, F., & Duranton, C. (2008). Organic osmolyte channels in malaria-infected erythrocytes. Biochemical and Biophysical Research Communications, 376(3), 514–518. https://doi.org/10.1016/j.bbrc.2008.09.036

Instituto Nacional de Salud. (2019). Boletín Epidemiológico Semanal: Semana epidemiológica 52. ISSN 2357-6189. https://doi.org/10.33610/23576189.2019.52

Kanaani, J., & Ginsburg, H. (1991). Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes. Antimicrobial Agents and Chemotherapy, 36(5), 1102–1108. https://doi.org/10.1128/AAC.36.5.1102

Kirk, K. (2001). Membrane transport in the malaria-infected erythrocyte. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 126(2), S65. https://doi.org/10.1016/S0305-0491(00)80128-5

Kirk, K., & Horner, H. A. (1995). In search of a selective inhibitor of the induced transport of small solutes in Plasmodium falciparum -infected erythrocytes: Effects of arylaminobenzoates. Biochemical Journal, 311(3), 761–768. https://doi.org/10.1042/bj3110761

Kirk, K., & Saliba, K. J. (2007). Targeting nutrient uptake mechanisms in Plasmodium. Current Drug Targets, 8, 75–88. https://doi.org/10.2174/138945007779315560

Kucherenko, Y. V., Huber, S. M., Nielsen, S., & Lang, F. (2012). Decreased redox-sensitive erythrocyte cation channel activity in aquaporin 9-deficient mice. Journal of Membrane Biology, 245(12), 797–805. https://doi.org/10.1007/s00232-012-9482-y

Lisk, G., Kang, M., Cohn, J. V., & Desai, S. A. (2006). Specific inhibition of the plasmodial surface anion channel by Dantrolene. Eukaryotic Cell, 5(11), 1882–1893. https://doi.org/10.1128/ec.00212-06

López, L., & Segura, C. (2008). Nuevas vías de permeabilidad y regulación del pH intracelular como posibles blancos terapéuticos en Plasmodium falciparum. Acta Biológica Colombiana, 13(2), 3–22. https://revistas.unal.edu.co/index.php/actabiol/article/view/1530/2185::pdf

Martin, R. E., Kirk, K., & Dc, W. (2007). Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood, 109(5), 2217–2224. https://doi.org/10.1182/blood-2005-11-026963

Martin, R. E., Shafik, S. H., & Richards, S. N. (2018). Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Current Opinion in Pharmacology, 42, 71–80. https://doi.org/10.1016/j.coph.2018.07.010

Merckx, A., Bouyer, G., Thomas, S. L. Y., Langsley, G., & Egée, S. (2008). Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A. Trends in Parasitology, 25(3), 139–144. https://doi.org/10.1016/j.pt.2008.12.005

Mohandas, N., & Gallagher, P. G. (2008). Red cell membrane: past, present, and future. Blood, 11(10), 3939–3948. https://doi.org/10.1182/blood-2008-07-161166

Nguitrangool, W., Bokhari, A., Pillai A., Rayavara K., Sharma P., Turpin B, Aravind, L., & Desai, S. A. (2011). Malaria parasite clag genes determine nutrient uptake channel activity on infected red blood cells. Cell, 145(5), 665–77. https://doi.org/10.1016/j.cell.2011.05.002

Nishtala, S. N., Arora, A., Reyes, J., & Akabas, M. H. (2018). Accessibility of substituted cysteines in TM2 and TM10 transmembrane segments in the Plasmodium falciparum equilibrate nucleoside transporter PfENT1. Journal of Biological Chemistry, 294(6), 1924–1935. https://doi.org/10.1074/jbc.ra118.006547

Philippot, J. R., Ancelin, M. L., Vial, H. J., Thuet, M. J., & Parant, M. (1991). Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection. Biochemical Journal, 273(3), 701–709. https://doi.org/10.1042/bj2730701

Prudêncio, M., Rodriguez, A., & Mota, M. M. (2006). The silent path to thousands of merozoites: The Plasmodium liver stage. Nature Reviews Microbiology, 4(11), 849–856. https://doi.org/10.1038/nrmicro1529

Salhany, J. M. (2004). Slow transitions between two conformational states of band 3 (AE1) modulate divalent anion transport and DBDS binding to a second site on band 3 which is activated by lowering the pH (pK ∼ 5.0). Blood Cells, Molecules, and Diseases, 32(3), 372–378. https://doi.org/10.1016/j.bcmd.2004.01.009

Staines, H. M., Godfrey, E. M., Lapaix, F., Egee, S., Thomas, S., & Ellory, J. C. (2001). Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochimica et Biophysica Acta - Biomembranes, 1561(1), 98–108. https://doi.org/10.1016/S0005-2736(01)00461-8

Staines, H. M., Dee, B. C., Shen, M. R., & Ellory, J. C. (2004). The effect of mefloquine and volume-regulated anion channel inhibitors on induced transport in Plasmodium falciparum-infected human red blood cells. Blood Cells, Molecules, and Diseases, 32(3), 344–348. https://doi.org/10.1016/j.bcmd.2004.01.004

Staines, H. M., Staines, H. M., Ashmore, S., Ashmore, S., Felgate, H., Felgate, H., & Ellory, J. C. (2006). Solute transport via the new permeability pathways in. Transport, 108(9), 3187–3194. https://doi.org/10.1182/blood-2006-02-001693.Supported

Taglialatela-Scafati, O., Pedretti, A., Galli, C., Read, M., Pancotti, A., Russo, I., & Giurisato, E. (2015). Picomolar inhibition of Plasmepsin V, an essential malaria protease, achieved exploiting the prime region. Plos One, 10(11), e0142509. https://doi.org/10.1371/journal.pone.0142509

Thomas, S. L. Y., & Lew, V. L. (2004). Plasmodium falciparum and the permeation pathway of the host red blood cell. Trends in Parasitology, 20(3), 122–125. https://doi.org/10.1016/j.jqsrt.2018.04.019

Waller, K. L., McBride, S. M., Kim, K., & McDonald, T. V. (2008). Characterization of two putative potassium channels in Plasmodium falciparum. Malaria Journal, 7, 1–11. https://doi.org/10.1186/1475-2875-7-19

World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.

Zainabadi, K. (2016). Malaria parasite clag3, a protein linked to nutrient channels, participates in high molecular weight membrane-associated complexes in the infected erythrocyte. PLoS ONE, 11(6), 1–15. https://doi.org/10.1371/journal.pone.0157390

Zipprer, E. M., Neggers, M., Kushwaha, A., Rayavara K., & Desai, S. A. (2014). A kinetic fluorescence assay reveals unusual features of Ca++ uptake in Plasmodium falciparum-infected erythrocytes. Lipids in Health and Disease, 13(1), 1–11. https://doi.org/10.1186/1475-2875-13-184

Publicado
2021-07-19
Cómo citar
Castañeda-Agudelo Y., & Pabón-Vidal A. (2021). Nuevas rutas de permeabilidad en <i>Plasmodium falciparum</i&gt;: consideraciones como blanco farmacológico y avances de los potenciales inhibidores. Actualidades Biológicas, 43(115), 1-13. https://doi.org/10.17533/udea.acbi.v43n115a03
Sección
Artículos de revisión