Novas vias de permeabilidade em Plasmodium falciparum: considerações como alvo farmacológico e avanços em inibidores potenciais
DOI:
https://doi.org/10.17533/udea.acbi.v43n115a03Palavras-chave:
NPP, Plasmodium, malaria, antimaláricos, eritrocitoResumo
Na malária, a resistência persistente aos antimaláricos pelo Plasmodium falciparum constitui um problema de saúde pública mundial. As Novas Vias de Permeabilidade (NPP) são um alvo terapêutico promissor, pois o parasita as utiliza para modificar a membrana do eritrócito e torná-lo permeável a vários nutrientes necessários ao seu crescimento. Apresentamos uma revisão temática onde foi feita uma compilação de vários estudos relacionados ao NPP, sua importância e seus inibidores.
Downloads
Referências
Alkhalil, A., Cohn, J., Wagner, M., Cabrera, J., Rajapandi, T., & Desai, S. (2004). Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood Journal, 104(13), 4279–86. https://doi.org/10.1182/blood-2004-05-2047
Bannister, L., & Mitchell, G. (2003). The ins, outs, and roundabouts of malaria. Trends in Parasitology, 19(5), 209–13. https://doi.org/10.1016/s1471-4922(03)00086-2
Baumeister, S., Endermann, T., Charpian, S., Nyalwidhe, J., Huber, S., Lingelbach, K., Lang, F., & Kirk, K. (2003). A biotin derivative blocks parasite induced novel permeation pathways in Plasmodium falciparum-infected erythrocytes. Molecular and Biochemical Parasitology, 132(1), 35–45. https://doi.org/10.1016/j.molbiopara.2003.08.003
Baumeister, S., Gangopadhyay, P., Repnik, U., & Lingelbach, K. (2015). Novel insights into red blood cell physiology using parasites as tools. European Journal of Cell Biology, 94(7–9), 332–339. https://doi.org/10.1016/j.ejcb.2015.05.007
Biagini, G. A., Pasini, E. M., Hughes, R., Koning, H. P. De, Vial, H. J., Ward, S. A., & Bray, P. G. (2004). Characterization of the choline carrier of. Blood, 104(10), 3372–3377. https://doi.org/10.1182/blood-2004-03-1084.Supported
Blodgett, D. M., & Carruthers, A. (2004). Conventional transport assays underestimate sugar transport rates in human red cells. Blood Cells, Molecules, and Diseases, 32(3), 401–407. https://doi.org/10.1016/j.bcmd.2004.01.015
Boddey, J. A., Carvalho, T. G., Hodder, A. N., Sargeant, T. J., Sleebs, B. E., Marapana, D., Lopaticki, S., Nebl, T., & Cowman, A. F. (2013). Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic, 14(5), 532–550. https://doi.org/10.1111/tra.12053
Bowlin, T. L., Lyko, B., Nguyen, S. T., Peet, N. P., Butler, M. M., Dolinta, K., & Desai, S. A. (2012). Solute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisition. Molecular Pharmacology, 82(6), 1104–1114. https://doi.org/10.1124/mol.112.081224
Brain, M. C., Pihl, C., Robertson, L., & Brown, C. B. (2004). Evidence for a mechanosensitive calcium influx into red cells. Blood Cells, Molecules, and Diseases, 32(3), 349–352. https://doi.org/10.1016/j.bcmd.2004.01.005
Bray, P. G., DeKoning, H. P., Stocks, P. A., Stead, A. M. W., Edwards, I. G., Elford, B. C., & Ward, S. A. (2001). Diamidine compounds: Selective uptake and targeting in Plasmodium falciparum. Molecular Pharmacology, 59(5), 1298–1306. https://doi.org/10.1124/mol.59.5.1298
Cabantchik, Z. I., Shanzer, A., Mester, B., Libman, J., Loyevsky, M., & Lytton, S. D. (1993). The antimalarial action of deferral involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. Journal of Clinical Investigation, 91(1), 218–224. https://doi.org/10.1172/jci116174
Chassaigne, J. A. (2001). Malaria y fármacos antimaláricos. Revista de la Sociedad Venezolana de Microbiología, 21(2), 85–88. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562001000200017
Cobbold, S. A., Martin, R. E., & Kirk, K. (2010). Methionine transport in the malaria parasite Plasmodium falciparum. International Journal for Parasitology, 41(1), 125–135. https://doi.org/10.1016/j.ijpara.2010.09.001
Cohn J. V., Alkhalil A., Wagner M. A., Rajapandi T., & Desai S. A. (2003). Extracellular lysines on the plasmodial surface anion channel involved in Na+ exclusion. Molecular and Biochemical Parasitology, 132(1), 27–34. https://doi.org/10.1016/j.molbiopara.2003.08.001
Counihan, N. A., Chisholm, S. A., Bullen, H. E., Srivastava, A., Sanders, P. R., Jonsdottir, T. K., Weiss, G. E., Ghosh, S., Crabb, B.S., Creek, D. J., Gilson, P. R., De Koning-Ward, T. F. (2017). Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. ELife, 6, 1–31. https://doi.org/10.7554/eLife.23217
Decherf , G., Egée, S., Staines, H. M., Ellory, J. C., & Thomas, S. L. (2004). Anionic channels in malaria-infected human red blood cells. Blood Cells, Molecules, and Diseases, 32(3), 366–371. https://doi.org/10.1016/j.bcmd.2004.01.008
Dunham, P. B. (2004). Cell shrinkage activates Na+/H+ exchange in dog red cells by relieving inhibition of exchange by Na+ in isotonic medium. Blood Cells, Molecules, and Diseases, 32(3), 389–393. https://doi.org/10.1016/j.bcmd.2004.01.012
Duranton, C., Huber, S. M., Tanneur, V., Brand, V. B., Akkaya, C., Shumilina, E. V., Lang, F. (2004). Organic osmolyte permeabilities of the Malaria - induced anion conductances in human erythrocytes. The Journal of General Physiology, 123(4), 417–426. https://doi.org/10.1085/jgp.200308919
Elsworth, B., Matthews, K., Nie, C. Q., Kalanon, M., Charnaud, S. C., Sanders, P. R., De Koning-Ward, T. F. (2014). PTEX is an essential nexus for protein export in malaria parasites. Nature, 511(7511), 587–591. https://doi.org/10.1038/nature13555
Gazdik, M., Jarman, K. E., O’Neill, M. T., Hodder, A. N., Lowes, K. N., Jousset Sabroux, H., Sleebs, B. E. (2016). Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorganic and Medicinal Chemistry, 24(9), 1993–2010. https://doi.org/10.1016/j.bmc.2016.03.027
Gilson, P. R., Chisholm, S. A., Crabb, B. S., & de Koning-Ward, T. F. (2017). Host cell remodelling in malaria parasites: a new pool of potential drug targets. International Journal for Parasitology, 47(2–3), 119–127. https://doi.org/10.1016/j.ijpara.2016.06.001
Gilson, P. R., Cobbold, S. A., Elsworth, B., Crabb, B. S., Nie, C. Q., McConville, M. J., & Dickerman, B. K. (2016). Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Scientific Reports, 6(1), 1–15. https://doi.org/10.1038/srep37502
Ginsburg, H., Krugliak, M., Eidelman, O., & Cabantchik, Z. I. (1983). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology, 8(2), 177–190. https://doi.org/10.1016/0166-6851(83)90008-7
Gupta, A., Balabaskaran-nina, P., Nguitragool, W., Saggu, G. S., Schureck, M. A., & Desai, A. (2018). CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane. mBio, 9(3), 1–18. https://doi.org/10.1128/mBio.02293-17
Helms, J. B., Arnett, K. L., Gatto, C., & Milanick, M. A. (2004). Bretylium, an organic quaternary amine, inhibits the Na, K-ATPase by binding to the extracellular K-site. Blood Cells, Molecules, and Diseases, 32(3), 394–400. https://doi.org/10.1016/j.bcmd.2004.01.013
Huber, S. M., Lang, C., Lang, F., & Duranton, C. (2008). Organic osmolyte channels in malaria-infected erythrocytes. Biochemical and Biophysical Research Communications, 376(3), 514–518. https://doi.org/10.1016/j.bbrc.2008.09.036
Instituto Nacional de Salud. (2019). Boletín Epidemiológico Semanal: Semana epidemiológica 52. ISSN 2357-6189. https://doi.org/10.33610/23576189.2019.52
Kanaani, J., & Ginsburg, H. (1991). Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes. Antimicrobial Agents and Chemotherapy, 36(5), 1102–1108. https://doi.org/10.1128/AAC.36.5.1102
Kirk, K. (2001). Membrane transport in the malaria-infected erythrocyte. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 126(2), S65. https://doi.org/10.1016/S0305-0491(00)80128-5
Kirk, K., & Horner, H. A. (1995). In search of a selective inhibitor of the induced transport of small solutes in Plasmodium falciparum -infected erythrocytes: Effects of arylaminobenzoates. Biochemical Journal, 311(3), 761–768. https://doi.org/10.1042/bj3110761
Kirk, K., & Saliba, K. J. (2007). Targeting nutrient uptake mechanisms in Plasmodium. Current Drug Targets, 8, 75–88. https://doi.org/10.2174/138945007779315560
Kucherenko, Y. V., Huber, S. M., Nielsen, S., & Lang, F. (2012). Decreased redox-sensitive erythrocyte cation channel activity in aquaporin 9-deficient mice. Journal of Membrane Biology, 245(12), 797–805. https://doi.org/10.1007/s00232-012-9482-y
Lisk, G., Kang, M., Cohn, J. V., & Desai, S. A. (2006). Specific inhibition of the plasmodial surface anion channel by Dantrolene. Eukaryotic Cell, 5(11), 1882–1893. https://doi.org/10.1128/ec.00212-06
López, L., & Segura, C. (2008). Nuevas vías de permeabilidad y regulación del pH intracelular como posibles blancos terapéuticos en Plasmodium falciparum. Acta Biológica Colombiana, 13(2), 3–22. https://revistas.unal.edu.co/index.php/actabiol/article/view/1530/2185::pdf
Martin, R. E., Kirk, K., & Dc, W. (2007). Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood, 109(5), 2217–2224. https://doi.org/10.1182/blood-2005-11-026963
Martin, R. E., Shafik, S. H., & Richards, S. N. (2018). Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Current Opinion in Pharmacology, 42, 71–80. https://doi.org/10.1016/j.coph.2018.07.010
Merckx, A., Bouyer, G., Thomas, S. L. Y., Langsley, G., & Egée, S. (2008). Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A. Trends in Parasitology, 25(3), 139–144. https://doi.org/10.1016/j.pt.2008.12.005
Mohandas, N., & Gallagher, P. G. (2008). Red cell membrane: past, present, and future. Blood, 11(10), 3939–3948. https://doi.org/10.1182/blood-2008-07-161166
Nguitrangool, W., Bokhari, A., Pillai A., Rayavara K., Sharma P., Turpin B, Aravind, L., & Desai, S. A. (2011). Malaria parasite clag genes determine nutrient uptake channel activity on infected red blood cells. Cell, 145(5), 665–77. https://doi.org/10.1016/j.cell.2011.05.002
Nishtala, S. N., Arora, A., Reyes, J., & Akabas, M. H. (2018). Accessibility of substituted cysteines in TM2 and TM10 transmembrane segments in the Plasmodium falciparum equilibrate nucleoside transporter PfENT1. Journal of Biological Chemistry, 294(6), 1924–1935. https://doi.org/10.1074/jbc.ra118.006547
Philippot, J. R., Ancelin, M. L., Vial, H. J., Thuet, M. J., & Parant, M. (1991). Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection. Biochemical Journal, 273(3), 701–709. https://doi.org/10.1042/bj2730701
Prudêncio, M., Rodriguez, A., & Mota, M. M. (2006). The silent path to thousands of merozoites: The Plasmodium liver stage. Nature Reviews Microbiology, 4(11), 849–856. https://doi.org/10.1038/nrmicro1529
Salhany, J. M. (2004). Slow transitions between two conformational states of band 3 (AE1) modulate divalent anion transport and DBDS binding to a second site on band 3 which is activated by lowering the pH (pK ∼ 5.0). Blood Cells, Molecules, and Diseases, 32(3), 372–378. https://doi.org/10.1016/j.bcmd.2004.01.009
Staines, H. M., Godfrey, E. M., Lapaix, F., Egee, S., Thomas, S., & Ellory, J. C. (2001). Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochimica et Biophysica Acta - Biomembranes, 1561(1), 98–108. https://doi.org/10.1016/S0005-2736(01)00461-8
Staines, H. M., Dee, B. C., Shen, M. R., & Ellory, J. C. (2004). The effect of mefloquine and volume-regulated anion channel inhibitors on induced transport in Plasmodium falciparum-infected human red blood cells. Blood Cells, Molecules, and Diseases, 32(3), 344–348. https://doi.org/10.1016/j.bcmd.2004.01.004
Staines, H. M., Staines, H. M., Ashmore, S., Ashmore, S., Felgate, H., Felgate, H., & Ellory, J. C. (2006). Solute transport via the new permeability pathways in. Transport, 108(9), 3187–3194. https://doi.org/10.1182/blood-2006-02-001693.Supported
Taglialatela-Scafati, O., Pedretti, A., Galli, C., Read, M., Pancotti, A., Russo, I., & Giurisato, E. (2015). Picomolar inhibition of Plasmepsin V, an essential malaria protease, achieved exploiting the prime region. Plos One, 10(11), e0142509. https://doi.org/10.1371/journal.pone.0142509
Thomas, S. L. Y., & Lew, V. L. (2004). Plasmodium falciparum and the permeation pathway of the host red blood cell. Trends in Parasitology, 20(3), 122–125. https://doi.org/10.1016/j.jqsrt.2018.04.019
Waller, K. L., McBride, S. M., Kim, K., & McDonald, T. V. (2008). Characterization of two putative potassium channels in Plasmodium falciparum. Malaria Journal, 7, 1–11. https://doi.org/10.1186/1475-2875-7-19
World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
Zainabadi, K. (2016). Malaria parasite clag3, a protein linked to nutrient channels, participates in high molecular weight membrane-associated complexes in the infected erythrocyte. PLoS ONE, 11(6), 1–15. https://doi.org/10.1371/journal.pone.0157390
Zipprer, E. M., Neggers, M., Kushwaha, A., Rayavara K., & Desai, S. A. (2014). A kinetic fluorescence assay reveals unusual features of Ca++ uptake in Plasmodium falciparum-infected erythrocytes. Lipids in Health and Disease, 13(1), 1–11. https://doi.org/10.1186/1475-2875-13-184
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Actualidades Biológicas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam exclusivamente a revista Actualidades Biológicas a editar e publicar o manuscrito submetido, desde que sua publicação seja recomendada e aceita, sem que isso represente qualquer custo para a Revista ou para a Universidade de Antioquia. Todas as ideias e opiniões contidas nos artigos são de responsabilidade exclusiva de Os autores. O conteúdo total das edições ou suplementos da revista é protegido pela Licença Internacional Creative Commons Atribuição-NãoComercial-Compartilhamento pela mesma Licença, portanto não podem ser utilizados para fins comerciais, mas sim para fins educacionais. Porém, cite a revista Actualidades Biológicas como fonte e envie uma cópia da publicação em que o conteúdo foi reproduzido.