Influencia del factor de crecimiento fibroblástico 2 en células madre in vitro

Autores/as

  • Catalina Rubio-Vargas Universidad del Tolima
  • Jessica Alcázar Universidad del Tolima
  • Liliana Francis-Turner Universidad del Tolima

DOI:

https://doi.org/10.17533/udea.acbi.v41n111a03

Palabras clave:

FGF-2, proliferación celular, senescencia, terapia celular

Resumen

El interés y la necesidad de estudiar las células madre en terapias regenerativas han aumentado en los últimos años debido a su capacidad de proliferación y diferenciación hacia múltiples linajes. Desafortunadamente, el número de células demandado para un trasplante satisfactorio es mayor al que se logra extraer directamente del paciente, por lo que se deben realizar cultivos in vitro de células madre. Sin embargo, con el tiempo las células de estos cultivos se vuelven senescentes, disminuyendo así su número de divisiones celulares y su capacidad proliferativa. Para solucionar esta problemática se han propuesto factores de crecimiento como agentes potenciadores de la proliferación celular. Entre estos se encuentra el factor de crecimiento fibroblástico 2, que al agregarse al medio podría promover la proliferación y aumentar el tiempo de vida de las células en cultivo. En la siguiente revisión se recopila información sobre la biología de este factor de crecimiento y el tipo de señalización que utiliza, al igual que sus aplicaciones en terapia regenerativa y su efecto en la proliferación celular y senescencia.

|Resumen
= 907 veces | PDF
= 443 veces| | HTML
= 24 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Catalina Rubio-Vargas, Universidad del Tolima

Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.
 
Grupo de modelos experimentales para las ciencias zoohumanas, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.

Jessica Alcázar, Universidad del Tolima

Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.

Grupo de modelos experimentales para las ciencias zoohumanas, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.

Liliana Francis-Turner, Universidad del Tolima

Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.
 
Grupo de modelos experimentales para las ciencias zoohumanas, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.
 

Citas

Ahn H-J, Lee W, Kwack K, Kwon Y. 2009. FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Letters, 583(17): 2922-2926. DOI: 10.1016/j.febslet.2009.07.056

Apel A, Groth A, Schlesinger S, Bruns H, Schemmer P, Büchler MW, Herr I. 2009. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium. Experimental Cell Research, 315(3): 498-507. DOI: 10.1016/j.yexcr.2008.11.013

Baker N, Boyette L, Tuan-R S. 2015. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone, 70: 37-47. DOI: 10.1016/j.bone.2014.10.014

Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R. 2003. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 287(1): 98-105. DOI: 10.1016/s0014-4827(03)00138-1

Brewer JR, Mazot P, Soriano P. 2016. Genetic insights into the mechanisms of Fgf signaling. Genes and Development, 30(7): 751-771. DOI: 10.1101/gad.277137.115

Brizuela C, Galleguillos S, Carrión F, Cabrera C, Luz P, Inostroza C. 2013. Aislación y caracterización de células madre mesenquimales provenientes de pulpa y folículo dentario humano. International Journal of Morphology, 31(2): 739-746. DOI: 10.4067/S0717-95022013000200063

Can A, Celikkan F T, Cinar O. 2017. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy, 19(12): 1351-1382. DOI: 10.1016/j.jcyt.2017.08.004

Carvalho PH, Daibert F, Monteiro BS, Okano BS, Carvalho JL, Cunha D, Cunha LS, Favarato V, Pereira, Augusto L, Carlo R. 2013. Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes. Arquivos Brasileiros de Cardiologia, 100(1): 82-89. DOI: 10.1590/s0066-782x2012005000114

Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. 2015. Comparison of biological characteristics of mesenchymal stem cells derived from maternal-origin placenta and Wharton’s jelly. Stem Cell Research and Therapy, 6(1): 228-234. DOI: 10.1186/s13287-015-0219-6

Chen T M, Chen Y H, Sun H S, Tsai S J. 2019. Fibroblast growth factors: Potential novel targets for regenerative therapy of osteoarthritis. Chinese Journal of Physiology, 62(1): 2-10. DOI: 10.4103/CJP.CJP_11_19

Coutu DL, François M, Galipeau J. 2011. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood, 117(25): 6801-6812. DOI: 10.1182/blood-2010-12-321539

Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Xing Q, Qu R, Yao, N. 2017. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behavioural Brain Research, 320: 291-301. DOI: 10.1016/j.bbr.2016.12.021

Dermargos A, Armelin H. 2007. FGF-2: estudo de estrutura e função [Tesis de Doctorado]. [São Paulo (Brasil)], Universidade de São Paulo.

Dolivo D, Hernandez S, Dominko T. 2016. Cellular lifespan and senescence: a complex balance between multiple cellular pathways. Bioessays, 38: S33-44. DOI: 10.1002/bies.201670906

Drela K, Sarnowska A, Siedlecka P, Szablowska-Gadomska I, Wielgos M, Jurga M, Lukomska B, Domanska-Janik K. 2014. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy, 16(7): 881-892. DOI: 10.1016/j.jcyt.2014.02.009

El Agha E, Kosanovic D, Schermuly RT, Bellusci S. 2016. Role of fibroblast growth factors in organ regeneration and repair. In Seminars in Cell and Developmental Biology, 53: 76-84. DOI: 10.1016/j.semcdb.2015.10.009

Endo K, Fujita N, Nakagawa T, Nishimura R. 2019. Effect of fibroblast growth factor-2 and serum on canine mesenchymal stem cell chondrogenesis. Tissue Engineering Part A, 25(11-12): 901-910. DOI: 10.1089/ten.TEA.2018.0177

Eom YW, Oh JE, Lee JI, Baik SK, Rhee KJ, Shin HC, Kim C, Ahn J, Kong J, Shim K. 2014. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 445(1): 16-22. DOI: 10.1016/j.bbrc.2014.01.084

Espinoza F, Aliaga F, Crawford PL. 2016. Escenario actual y perspectivas de la terapia con células madre mesenquimales en medicina intensiva. Revista Médica de Chile, 144(2): 222-231. DOI: 10.4067/S0034-98872016000200011

Fernandes-Freitas I, Owen BM. 2015. Metabolic roles of endocrine fibroblast growth factors. Current Opinion in Pharmacology, 25: 30-35. DOI: 10.1016/j.coph.2015.09.014

Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F. 2010. Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells and Development, 19(9): 1321-1331. DOI: 10.1089/scd.2009.0313

Haghighi F, Dahlmann J, Nakhaei-Rad S, Lang A, Kutschka I, Zenker M, Kensah R, Piekorz R, Ahmadian MR. 2018. bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Communication and Signaling, 16(1): 96-109. DOI: 10.1186/s12964-018-0307-1

Hernández BM, Inostroza VC, Carrión AF, Chaparro PA, Quintero HA, Sanz RA. 2011. Proliferación de células madres mesenquimales obtenidas de tejido gingival humano sobre una matriz de quitosano: estudio in vitro. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral, 4(2): 59-63. DOI: 10.4067/S0719-01072011000200004

Hong SH, Lee MH, Koo MA, Seon GM, Park YJ, Kim D, Park JC. 2019. Stem cell passage affects directional migration of stem cells in electrotaxis. Stem Cell Research, 38: 101475. DOI: 10.1016/j.scr.2019.101475

Huang L, Wong YP, Gu H, Cai YJ, Ho Y, Wang CC, Leung T, Burd A. 2011. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy, 13(2): 145-155. DOI: 10.3109/14653249.2010.509578

Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. 2007. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2. Biochemical and Biophysical Research Communications, 359(1): 108-114. DOI: 10.1016/j.bbrc.2007.05.067

Katsares V, Petsa A, Felesakis A, Paparidis Z, Nikolaidou E, Gargani S, Karvounidou I, Ardelean K, Grigoriadis J. 2009. A rapid and accurate method for the stem cell viability evaluation: the case of the thawed umbilical cord blood. Laboratory Medicine, 40(9): 557-560. DOI: 10.1309/LMLE8BVHYWCT82CL

Korsensky L, Ron D. 2016. Regulation of FGF signaling: recent insights from studying positive and negative modulators. Seminars in Cell and Developmental Biology, 53: 101-114. DOI: 10.1016/j.semcdb.2016.01.023

Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. 2006. Regulation of fibroblast growth factor-23 signaling by Klotho. The Journal of Biological Chemistry, 281: 6120-6123. DOI:10.1074/jbc.C500457200

Lai WT, Krishnappa V, Phinney DG. 2011. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells, 29(7): 1102-1111. DOI: 10.1002/stem.661

Lee JS, Kim SK, Jung BJ, Choi SB, Choi EY, Kim CS. 2018. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2. Stem Cell Research, 28: 87-95. DOI: 10.1016/j.scr.2018.01.010

Markan KR, Potthoff MJ. 2016. Metabolic fibroblast growth factors (FGFs): mediators of energy homeostasis. Seminars in Cell and Developmental Biology, 53: 85-93. DOI: 10.1016/j.semcdb.2015.09.021

Meng X, Xue M, Xu P, Hu F, Sun B, Xiao Z. 2017. MicroRNA profiling analysis revealed different cellular senescence mechanisms in human mesenchymal stem cells derived from different origin. Genomics, 109(3-4): 147-157. DOI: 10.1016/j.ygeno.2017.02.003

Naugler WE, Tarlow BD, Fedorov LM, Taylor M, Pelz C, Li B, Darnell J, Grompe M. 2015. Fibroblast growth factor signaling controls liver size in mice with humanized livers. Gastroenterology, 149(3): 728-740. DOI: 10.1053/j.gastro.2015.05.043

Nawrocka D, Kornicka K, Szydlarska J, Marycz K. 2017. Basic fibroblast growth factor inhibits apoptosis and promotes proliferation of adipose-derived mesenchymal stromal cells isolated from patients with type 2 diabetes by reducing cellular oxidative stress. Oxidative Medicine and Cellular Longevity, 2017: 3027109. DOI: 10.1155/2017/3027109

Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubaméa B, Schmitt A, Vital S, Rochefort GY. 2019. Priming Dental Pulp Stem Cells from Human Exfoliated Deciduous Teeth with Fibroblast Growth Factor‐2 Enhances Mineralization Within Tissue‐Engineered Constructs Implanted in Craniofacial Bone Defects. Stem Cells Translational Medicine, 8(8): 844-857. DOI: 10.1002/sctm.18-0182

Nowwarote N, Pavasant P, Osathanon T. 2015. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Archives of Oral Biology, 60(3): 408-415. DOI: 10.1016/j.archoralbio.2014.11.017

Ornitz DM, Itoh N. 2001. Fibroblast growth factors. Genome Biology, 2(3): reviews3005.1–3005.12. DOI :10.1186/gb-2001-2-3-reviews3005

Park J, Lee JH, Yoon BS, Jun EK, Lee G, Kim IY, You S. 2018. Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells. Stem Cell Research and Therapy, 9(1): 293-309. DOI: 10.1186/s13287-018-1058-z

Preda MB, Rosca AM, Tutuianu R, Burlacu A. 2015. Pre-stimulation with FGF-2 increases in vitro functional coupling of mesenchymal stem cells with cardiac cells. Biochemical and Biophysical Research Communications, 464(2): 667-673. DOI: 10.1016/j.bbrc.2015.07.055

Quimby JM, Borjesson DL. 2018. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. Journal of Feline Medicine and Surgery, 20(3): 208-216. DOI: 10.1177/1098612X18758590

Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, Mobasheri R, Poletti F, Hoyland JA, Mobasheri A. 2016. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods, 99: 69-80. DOI: 10.1016/j.ymeth.2015.09.015

Sah JP, Hao NTT, Kim Y, Eigler T, Tzahor E, Kim SH, Hwang Y, Yoon JK. 2019. MBP-FGF2-Immobilized Matrix Maintains Self-Renewal and Myogenic Differentiation Potential of Skeletal Muscle Stem Cells. International Journal of Stem Cells, 12(2):360-366. DOI: 10.15283/ijsc18125

Taupin P, Ray J, Fischer WH, Suhr ST, Hakansson K, Grubb A, Gage FH. 2000. FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron, 28(2): 385-397. DOI: 10.1016/S0896-6273(00)00119-7

Wang JJ, Liu YL, Sun YC, Ge W, Wang YY, Dyce PW, Hou R, Shen W. 2015. Basic fibroblast growth factor stimulates the proliferation of bone marrow mesenchymal stem cells in giant panda (ailuropoda melanoleuca). PloS One, 10(9): e0137712. DOI: 10.1371/journal.pone.0137712

Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Xing Q, Zhang Y, Li Q, Zhang T. 2018. Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behavioural Brain Research, 339: 297-304. DOI: 10.1016/j.bbr.2017.10.032

Yang Y. 2018. Aging of mesenchymal stem cells: Implication in regenerative medicine. Regenerative Therapy, 9: 120-122. DOI:10.1016/j.reth.2018.09.002

Yonemitsu R, Tokunaga T, Shukunami C, Ideo K, Arimura H, Karasugi T, Nakamura J, Ide J, Hiraki Y, Mizuta H. 2019. Fibroblast Growth Factor 2 Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Repair of Chronic Tears. The American Journal of Sports Medicine, 47(7): 1701-1712. DOI: 10.1177/0363546519836959

Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, Mcgonagle D, Naing MW, Jones E. 2019. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: current methods and future directions. Cytotherapy, S1465-3249(19)30752-2. DOI: 10.1016/j.jcyt.2019.05.001

Zhang J, Li Y. 2016. Therapeutic uses of FGFs. Seminars in Cell and Developmental Biology, 53: 144-154. DOI: 10.1016/j.semcdb.2015.09.007

Zheng W, Nowakowski RS, Vaccarino FM. 2004. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Developmental Neuroscience, 26(2-4): 181-196. DOI: 10.1159/000082136

Ziaei M, Zhang J, Patel DV, McGhee CN. 2017. Umbilical cord stem cells in the treatment of corneal disease. Survey of Ophthalmology, 62(6): 803-815. DOI: 10.1016/j.survophthal.2017.02.002

Descargas

Publicado

2020-02-26

Cómo citar

Rubio Vargas, A. C., Alcázar Arzuza, J. P., & Francis Turner, L. (2020). Influencia del factor de crecimiento fibroblástico 2 en células madre in vitro. Actualidades Biológicas, 41(111), 1–8. https://doi.org/10.17533/udea.acbi.v41n111a03

Número

Sección

Artículos de revisión