Determinación de proteínas antifúngicas de cultivos sumergidos del hongo medicinal Ganoderma lucidum (Ganodermataceae) con actividad sobre el hongo fitopatógeno Mycosphaerella fijiensis (Mycosphaerellaceae)

Autores/as

DOI:

https://doi.org/10.17533/udea.acbi.v41n111a04

Palabras clave:

quitinasa, fungicida, Ganoderma lucidum, glucanasa, nucleasa, proteasa, Sigatoka

Resumen


El banano es uno de los cultivos comestibles más importante en el mundo, sin embargo, es atacado por diferentes patógenos, uno de los más destacados es el hongo Mycosphaerella fijiensis, agente causal de la Sigatoka Negra. Los problemas ambientales y económicos relacionados con los pesticidas usados para su control han estimulado la búsqueda de biomoléculas alternativas no contaminantes. En el grupo de Biotecnología de la Universidad de Antioquia se realizaron estudios previos buscando una alternativa biológica al control de M. fijiensis, en los cuales se determinó la capacidad antifúngica del hongo Ganoderma lucidum como antagonista y posteriormente como fuente de extractos proteicos con actividad inhibitoria in vitro y en plantas de invernadero; estos hallazgos fueron la base de este trabajo, que está enfocado en el estudio de la capacidad enzimática de las proteínas presentes en los extractos proteicos, debido a su capacidad potencial para degradar diferentes compuestos, incluyendo polisacáridos, lípidos, péptidos y ácidos nucleicos, que constituyen partes esenciales de una célula viva; por lo tanto, estos extractos pueden actuar como posibles agentes antifúngicos. En este estudio, los extractos proteicos de G. lucidum obtenidos a partir de cultivos en biorreactor (BIOFLO 110®) fueron caracterizados en términos de sus actividades enzimáticas: deoxyribonucleasa, ribonucleasa, proteasa, glucanasa y quitinasa. Los extractos también fueron fraccionados y cada fracción obtenida fue evaluada para la capacidad inhibitoria contra el hongo fitopatógeno M. fijiensis, y a través de los análisis de espectrometría de masas se confirmó la presencia de diferentes enzimas con potencial antifúngico.

|Resumen
= 347 veces | PDF (ENGLISH)
= 199 veces| | HTML
= 11 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mónica A. Arias-Londoño, Universidad de Antioquia, Medellin, Colombia

Laboratorio de Biotecnología, Universidad de Antioquia, Medellín, Colombia.

Centro de Investigaciones del Banano (CENIBANANO)-AUGURA

Paola A. Zapata-Ocampo, Universidad CES, Medellín, Colombia

Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia. Centro de Investigaciones del Banano (CENIBANANO)-AUGURA

Ángela R. Mosquera-Arévalo, Universidad de Antioquia, Medellin, Colombia

Laboratorio de Biotecnología, Universidad de Antioquia, Medellín, Colombia.

Jaiver D. Sánchez-Torres, Yara, Colombia

Centro de Investigaciones del Banano (CENIBANANO)-AUGURA.

Lucía Atehortúa-Garcés, Universidad de Antioquia, Medellin, Colombia

Laboratorio de Biotecnología, Universidad de Antioquia, Medellín, Colombia.

Citas

Adams D. 2004. Fungal Cell Wall Chitinases and Glucanases. Microbiology, 150(7): 2029–35. DOI: 10.1099/mic.0.26980-0

Ansor M, Abdullah N, Aminudin N. 2013. Anti-Angiotensin Converting Enzyme (ACE) Proteins from Mycelia of Ganoderma lucidum (Curtis) P. Karst. BMC Complementary and Alternative Medicine, 13(256): 1–8. DOI: 10.1186/1472-6882-13-256.

Arzate J, Aceves M, Dominguez M, Santos O. 2006. Antagonismo de Trichoderma Spp. Sobre Mycosphaerella fijiensis Morelet, Agente Causal de La Sigatoka Negra Del Plátano (Musa Sp.) in vitro e Invernadero. Revista Mexicana de Fitopatología, 24(002): 98–104. https://www.redalyc.org/articulo.oa?id=61224203

Ayala A, Colina M, Molina J, Vargas J, Rincón D, Medina J, Rosales L, Cárdenas H. 2014. Evaluación de la actividad antifúngica del quitosano contra el hongo Mycosphaerella fijiensis morelet que produce la sigatoka negra que ataca el plátano. Revista Iberoamericana de Polimeros, 15(6): 312–38. http://www.ehu.eus/reviberpol/pdf/NOV14/ayala.pdf

Banani H, Spadaro D, Zhang D, Matic S, Garibaldi A, Lodovica M. 2014. Biocontrol Activity of an Alkaline Serine Protease from Aureobasidium pullulans Expressed in Pichia pastoris against Four Postharvest Pathogens on Apple. International Journal of Food Microbiology, 182–183: 1–8. DOI: 10.1016/j.ijfoodmicro.2014.05.001

Binder U, Mojca B, Eigentler A, Meyer V, Marx F. 2011. The Aspergillus giganteus Antifungal Protein AFPNN5353 Activates the Cell Wall Integrity Pathway and Perturbs Calcium Homeostasis. BMC Microbiology, 11(209): 1–13. DOI: 10.1186/1471-2180-11-209

Bradford M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72: 248–54. DOI: 10.1006/abio.1976.9999

Brzezinska M and Jankiewicz U. 2012. Production of Antifungal Chitinase by Aspergillus niger LOCK 62 and Its Potential Role in the Biological Control. Current Microbiology, 65: 666–72. DOI: 10.1007/s00284-012-0208-2

Ceballos I, Mosquera S, Angulo M, Mira J, Argel L, Uribe D, Romero M, Sergio Orduz S, Villegas V. 2012. Cultivable Bacteria Populations Associated with Leaves of Banana and Plantain Plants and Their Antagonistic Activity Against Mycosphaerella fijiensis. Microbial Ecology, 64(1): 1–13. DOI: 10.1007/s00248-012-0052-8

Cenibanano. 2009. Proyecto Especial Sigatoka. Medellín: AUGURA. Asociación de Bananeros de Colombia. General Technical Report. https://www.augura.com.co/centro-documental/biblioteca-digital/

Chevalier F. 2010. Standard Dyes for Total Protein Staining in Gel-Based Proteomic Analysis. Materials, 3(10): 4784–92. DOI: 10.3390/ma3104784

Churchill A. 2011. Mycosphaerella fijiensis, the Black Leaf Streak Pathogen of Banana: Progress towards Understanding Pathogen Biology and Detection, Disease Development, and the Challenges of Control. Molecular Plant Pathology, 12(4): 307–28. DOI: 10.1111/j.1364-3703.2010.00672

Clinical and Laboratory Standards Institute (CLSI). 2009. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd ed. Wayne (USA): CLSI. 28(16):1–35. https://clsi.org/media/1455/m38a2_sample.pdf

Cretoiu M, Kielak A, Al-Soud W, Sørensen S, Van Elsas J. 2012. Mining of Unexplored Habitats for Novel Chitinases - ChiA as a Helper Gene Proxy in Metagenomics. Applied Microbiology and Biotechnology, 94(5): 1347–58. doi: 10.1007/s00253-012-4057-5

Crowell A, Wall M, Doucette A. 2013. Maximizing Recovery of Water-Soluble Proteins through Acetone Precipitation. Analytica Chimica Acta, 796: 48–54. DOI: 10.1016/j.aca.2013.08.005.

Dekroon R, Osorio C, Robinette J, Mocanu M, Winnik W, Alzate O. 2011. Simultaneous Detection of Changes in Protein Expression and Oxidative Modification as a Function of Age and APOE Genotype. Journal of Proteome Research, 10(4): 1632–44. DOI: 10.1021/pr1009788

Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J. 2012. Proteins of Higher Fungi - from Forest to Application. Trends in Biotechnology, 30(5): 259–73. DOI: 10.1016/j.tibtech.2012.01.004

Fabiola I, Oliveira R, Vaz C, Brugnari T, Castoldi R, Peralta R, Marques C. 2015. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus. BioMed Research International, 2015: 1-11. DOI: 10.1155/2015/290161

Fernández F, Carbú M, El-Akhal M, Garrido C, González V, Cantoral J. 2011. Development of Proteomics-Based Fungicides: New Strategies for Environmentally Friendly Control of Fungal Plant Diseases. International Journal of Molecular Sciences, 12(1): 795–816. DOI: 10.3390/ijms12010795

Food and Agriculture Organization of the United Nations (FAO). 2011. Market and Policy Analyses of Raw Materials, Horticulture and Tropical (RAMHOT) Products Team. Overview of World Banana Production and Trade. Rome: Food and Agriculture Organization of the United Nations.

Food and Agriculture Organization of the United Nations (FAO). 2014. Market and Policy Analyses of Raw Materials, Horticulture and Tropical (RAMHOT) Products Team. Banana Market Review and Banana Statistics 2012-2013. 2014. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i3627e/i3627e.pdf

Frazier W and Rupp P. 1928. Studies on the Proteolytic Bacteria of Milk Ii. Action of Proteolytic Bacteria of Milk on Milk. Journal of Bacteriology, 16(1): 65–78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC533227/

Gabarro M, Gullon S, Vicente R, Caminal G, Mellado R, Lopez J. 2016. A Streptomyces lividans SipY Deficient Strain as a Host for Protein Production: Standardization of Operational Alternatives for Model Proteins. Journal of Chemical Technology and Biotechnology, 92(1): 217–23. DOI:10.1002/jctb.4933

Hartl L, Zach S, Seidl V. 2012. Fungal Chitinases: Diversity, Mechanistic Properties and Biotechnological Potential. Applied Microbiology and Biotechnology, 93(2): 533–43. DOI: 10.1007/s00253-011-3723-3.

Hegedüs N and Marx F. 2013. Antifungal Proteins: More than Antimicrobials. Fungal Biology Reviews, 26(1): 132–45. DOI: 10.1016/j.fbr.2012.07.002

Jijakli M and Lepoivre P. 1998. Characterization of an Exo-Beta-1,3-Glucanase Produced by Pichia anomala Strain K, Antagonist of Botrytis cinerea on Apples. Phytopathology, 88(4): 335–43. DOI: 10.1094/PHYTO.1998.88.4.335

Johanson A and Jeger M. 1993. Use of PCR for Detection of Mycosphaerella fijiensis and M. musicola, the Causal Agents of Sigatoka Leaf Spots in Banana and Plantain. Mycological Research, 97(6): 670–74. DOI:10.1016/S0953-7562(09)80145-7

Kalnitsky G, Hummel J, Dierks C. 1958. Some Factors Which Affect the Enzymatic Digestion of Ribonucleic Acid. Journal of Biological Chemistry, 234(6): 1512–16. http://www.jbc.org/content/234/6/1512.long

Khalyfa A, Kermasha S, Khamessan A, Marsot P, Alli I. 1993. Purification and Characterization of Chlorophyllase from Alga (Phaeodactylum tricornutum) by Preparative Isoelectric Focusing. Bioscience, Biotechnology and Biochemistry, 57(3): 433–37. DOI: 10.1271/bbb.57.433

LaKunitz B. 1946. A Spectrophotometric Method for the Measurement of Ribonuclease Activity. Journal of Biological Chemistry, 164: 563–68. http://www.jbc.org/content/164/2/563.short

Kunitz B. 1950. Crystalline Desoxyribonuclease; Isolation and General Properties; Spectrophotometric Method for the Measurement of Desoxyribonuclease Activity. The Journal of General Physiology, 33(4): 349–62. DOI: 10.1085/jgp.33.4.349

Laemmli U. 1970. Cleavage of Structural Proteins during Assembly of Head of Bacteriophage‐T4. Nature, 227: 680–85. DOI:10.1038/227680a0

LaMontagne E, Collins C, Peck S, Heese A, LaMontagne E, Collins C, Peck S, Heese A. 2016. Isolation of Microsomal Membrane Proteins from Arabidopsis thaliana. Current Protocols in Plant Biology, 1: 217–34. DOI: 10.1002/cppb.20020

Lapolla A, Fedele D, Reitano R, Concetta N, Seraglia R, Traldi P, Marotta E, Tonani R. 2004. Enzymatic Digestion and Mass Spectrometry in the Study of Advanced Glycation End Products/Peptides. Journal of the American Society for Mass Spectrometry, 15(4): 496–509. DOI: 10.1016/j.jasms.2003.11.014

Liang Z, Hseu R, Wang H. 1995. Partial Purification and Characterization of a 1 , 3-13-D-Glucanase from Ganoderma tsugae. Journal of Industrial Microbiology, 14: 5–9. DOI:10.1007/BF01570058

Luhtala N and Parker R. 2010. T2 Family Ribonucleases: Ancient Enzymes with Diverse Roles. Trends in Biochemical Sciences, 35(5): 253–59. DOI:10.1016/j.tibs.2010.02.002

Magnin R, Trotel P, Quantinet D, Biagianti S, Aziz A. 2007. Biological Control of Botrytis Cinerea by Selected Grapevine-Associated Bacteria and Stimulation of Chitinase and Beta-1,3 Glucanase Activities under Field Conditions. European Journal of Plant Pathology, 118: 43–57. DOI:10.1007/s10658-007-9111-2

Manavalan T, Manavalan A, Thangavelu K, Heese K. 2015. Characterization of a Novel Endoglucanase from Ganoderma lucidum. Journal of Basic Microbiology, 55(6): 761–71. DOI:10.1002/jobm.201400808

Marín D, Romero R, Guzmán M, Sutton T. 2003. Black Sigatoka: An Increasing Threat to Banana Cultivation. Plant Disease, 87(3): 208–22. DOI:10.1094/PDIS.2003.87.3.208

Martínez H, Espinal C, Peña Y. 2005. La Cadena Del Banano En Colombia: Una Mirada Global de Su Estructura y Dinámica (1991-2005). Bogotá, Colombia: Ministerio de Agricultura y Desarrollo, Observatorio Agrocadenas. http://bibliotecadigital.agronet.gov.co/handle/11348/5874

Montgomery D. 2012. Design and Analysis of Single-Factor Experiments: The Analysis of Variance. In: Montgomery DC and Runger GC editors. Applied Statistics and Probability for Engineers. 6th Ed. Hoboken (USA): John Wiley & Sons, Inc. p. 463–521.

Munro C. 2013. Chitin and Glucan, the Yin and Yang of the Fungal Cell Wall, Implications for Antifungal Drug Discovery and Therapy. Advances in Applied Microbiology, 83: 15-72. DOI: 10.1016/B978-0-12-407678-5.00004-0.

Murphy L, Cruys N, Delcomyn H, Baumann M, Olsen S, Borch K, Lassen S, Sweeney M, Tatsumi H, Westh P. 2012. Origin of Initial Burst in Activity for Trichoderma reesei Endo-Glucanases Hydrolyzing Insoluble Cellulose. Journal of Biological Chemistry, 287(2): 1252–60. DOI: 10.1074/jbc.M111.276485.

Ng T. B. 2004. Peptides and Proteins from Fungi. Peptides, 25: 1055–73. DOI: 10.1016/j.peptides.2004.03.013

Ngai PH and Ng T. 2003. Lentin, a Novel and Potent Antifungal Protein from Shitake Mushroom with Inhibitory Effects on Activity of Human Immunodeficiency Virus-1 Reverse Transcriptase and Proliferation of Leukemia Cells. Life Sciences, 73: 3363–74. DOI: 10.1016/j.lfs.2003.06.023

Ngai PH and Ng T. 2004. A Ribonuclease with Antimicrobial, Antimitogenic and Antiproliferative Activities from the Edible Mushroom Pleurotus sajor-caju. Peptides, 25(1): 11–17. DOI: 10.1016/j.peptides.2003.11.012

Ngai PH, Zhao Z, Ng T. 2005. Agrocybin, an Antifungal Peptide from the Edible Mushroom Agrocybe cylindracea. Peptides, 26(2): 191–96. DOI: 10.1016/j.peptides.2004.09.011

Niño J, Correa Y, Mosquera O. 2011. In vitro Evaluation of Colombian Plant Extracts against Black Sigatoka (Mycosphaerella fijiensis Morelet). Archives of Phytopathology and Plant Protection, 44(8): 791–803. DOI: 10.1080/03235401003672939

Nishino T and Morikawa K. 2002. Structure and Function of Nucleases in DNA Repair: Shape, Grip and Blade of the DNA Scissors. Oncogene, 21(58): 9022–32. DOI: 10.1038/sj.onc.1206135

Orlandelli R, de Almeida T, Alberto R, Polonio J, Azevedo J, Pamphile J. 2015. Antifungal and Proteolytic Activities of Endophytic Fungi Isolated from Piper hispidum Sw. Brazilian Journal of Microbiology, 46(2): 359–66. DOI: 10.1590/S1517-838246220131042

Osorio G. 2006. Evaluación de Hongos Endófiticos y Extractos Botánicos Para El Control de La Sigatoka Negra (Mycosphaerella fijinesis Morelet) En Banano [Tesis de Maestría]. [Turralba (Costa Rica)]. Centro agronómico tropical de investigación y enseñanza.

Paterson R. 2006. Ganoderma - a Therapeutic Fungal Biofactory. Phytochemistry, 67(18): 1985–2001. DOI: 10.1016/j.phytochem.2006.07.004

Patil N, Waghmare S, Jadhav J. 2013. Purification and Characterization of an Extracellular Antifungal Chitinase from Penicillium ochrochloron MTCC 517 and Its Application in Protoplast Formation. Process Biochemistry, 48: 176–83. DOI:10.1016/j.procbio.2012.11.017

Rao Q, Guo W, Chen X. 2015. Identification and Characterization of an Antifungal Protein, AfAFP Produced by Marine Derived Aspergillus fumigatus R9. Journal of Microbiology and Biotechnology, 25(5): 620–28.

Rawlings N and Barrett A. 2014. Peptidases. 3rd ed. ELS. Academic Press.

Rodríguez A. 2010. Caracterización de Proteínas Con Actividad Antifúngica Producidas Por Penicillium chrysogenum [Tesis de doctorado]. [Extremadura, (España)]: Universidad de Extremadura.

Sánchez D, Sánchez S, Plasencia J. 2012. Fumonisin B1, a Toxin Produced by Fusarium verticillioides, Modulates Maize β-1,3-Glucanase Activities Involved in Defense Response. Planta, 235: 965–78. doi: 10.1007/s00425-011-1555-0.

Suarez I, Rosario R, Aguilar A, Clemente P, Cubano L, Serrano J, Schneider R, Martínez M. 2013. Anti-Tumor Effects of Ganoderma lucidum (Reishi) in Inflammatory Breast Cancer in in vivo and in vitro Models. PloS One, 8(2): e57431. DOI: 10.1371/journal.pone.0057431.

Thi N and Doucet N. 2016. Combining Chitinase C and N-Acetylhexosaminidase from Streptomyces coelicolor A3(2) Provides an Efficient Way to Synthesize N-Acetylglucosamine from Crystalline Chitin. Journal of Biotechnology, 220(2): 25–32. DOI: 10.1016/j.jbiotec.2015.12.038

Tian M, Huitema E, Cunha L, Torto T, Kamoun S. 2004. A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-Related Protease P69B. Journal of Biological Chemistry, 279(25): 26370–77. DOI: 10.1074/jbc.M400941200

Tomar S, Chaudhary N, Mishra P, Gahloth D, Kumar G, Selvakumar P, Kumar P and Sharma A. 2014 a. Purification, Characterisation and Cloning of a 2S Albumin with DNase, RNase and Antifungal Activities from Putranjiva roxburghii. Applied Biochemistry and Biotechnology, 174(2): 471–82. DOI: 10.1007/s12010-014-1078-9

Tomar S, Nikhil K, Singh A, Selvakumar P, Partha Roy P, Sharma A. 2014 b. Characterization of Anticancer, DNase and Antifungal Activity of Pumpkin 2S Albumin. Biochemical and Biophysical Research Communications, 448(4): 349–54. DOI:10.1016/j.bbrc.2014.04.158

United States Environmental Protection Agency (EPA). 2005. Mancozeb Facts. Washington, DC. EPA 738-F-05-XX. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-014504_1-Sep-05.pdf

Viveros J and Castaño J. 2006. Evaluación in vitro de extractos vegetales sobre Mycosphaerella fijiensis morelet. Agronomia, 14(1): 37–50. https://www.redalyc.org/pdf/849/84916680041.pdf

Wang H and Ng T. 2001. Isolation of a Novel Deoxyribonuclease with Antifungal Activity from Asparagus officinalis Seeds. Biochemical and Biophysical Research Communications, 289(1): 120–24. DOI: 10.1006/bbrc.2001.5963

Wang H and Ng T. 2004. Eryngin, a Novel Antifungal Peptide from Fruiting Bodies of the Edible Mushroom Pleurotus eryngii. Peptides, 25(1): 1–5. DOI: 10.1016/j.peptides.2003.11.014

Wang H and Ng T. 2006. Ganodermin, an Antifungal Protein from Fruiting Bodies of the Medicinal Mushroom Ganoderma lucidum. Peptides, 27(1): 27–30. DOI: 10.1016/j.peptides.2005.06.009

Wong J, Ng T, Cheung R, Ye X, Wang H, Lam S, Lin P, Chan Y, Fang E, Ngai P, Xia L, Ye X, Jiang Y, Liu F. 2010. Proteins with Antifungal Properties and Other Medicinal Applications from Plants and Mushrooms. Applied Microbiology and Biotechnology, 87(4): 1221–35. DOI: 10.1007/s00253-010-2690-4

Wróbel M, Lorenc K, Starzycki M, Oszmiański J, Kepczyńska E, Szopa J. 2004. Expression of Beta-1,3-Glucanase in Flax Causes Increased Resistance to Fungi. Physiological and Molecular Plant Pathology, 65(5): 245–56. DOI: 10.1016/j.pmpp.2005.02.008

Ye M, Liu J, Lu Z, Zhao Y, Liu S, Li L, Tan M, Weng X, Li W, Cao Y. 2005. Grifolin, a Potential Antitumor Natural Product from the Mushroom Albatrellus confluens, Inhibits Tumor Cell Growth by Inducing Apoptosis in vitro. FEBS Letters 579(16):3437–43. DOI: 10.1016/j.febslet.2005.05.013

Yijie C, Jiang S, Jin Y, Yin Y, Yu G, Lan X, Cui M, Liang Y, Hon B, Wong C, Guo L, Sun H. 2012. Purification and Characterization of an Antitumor Protein with Deoxyribonuclease Activity from Edible Mushroom Agrocybe aegerita. Molecular Nutrition and Food Research, 56(11): 1729–38. doi:10.1002/mnfr.201200316

Yike I. 2011. Fungal Proteases and Their Pathophysiological Effects. Mycopathologia, 171(5): 299–323. DOI: 10.1007/s11046-010-9386-2

Yu G, Yin Y, Yu W, Liu W, Jin Y, Shrestha A, Yang Q, Ye X, Sun H. 2015. Proteome Exploration to Provide a Resource for the Investigation of Ganoderma lucidum. PloS One, 10(3): e0119439. DOI: 10.1371/journal.pone.0119439

Zapata P, Rojas D, Ramirez D, Fernandez C, Atehortúa L. 2009. Effect of Different Light-Emiting Diodes on Mycelial Biomass Production of Ling Zhi or Reishi Medicinal Mushroom Ganoderma lucidum (W.Curt.:F.)P.Karst (Aphyllophoromycetideae). International Journal of Medicinal Mushrooms, 11(1): 93–99. https://www.academia.edu/4615406/Effect_of_Different_Light-Emitting_Diodes_on_Mycelial_Biomass_Production_of_Ling_Zhi_or_Reishi_Medicinal_Mushroom_Ganoderma_lucidum_W._Curt._Fr._P._Karst._Aphyllophoromycetideae

Zhang Y, Liu Z, Ng T, Chen Z, Qiao W, Liu F . 2014. Purification and Characterization of a Novel Antitumor Protein with Antioxidant and Deoxyribonuclease Activity from Edible Mushroom Pholiota Nameko. Biochimie, 99(1): 28–37. DOI: 10.1016/j.biochi.2013.10.016.

Zhang R, Tian G, Zhao Y, Zhao L, Wang H, Gong Z, Ng T. 2015. A Novel Ribonuclease with HIV-1 Reverse Transcriptase Inhibitory Activity Purified from the Fungus Ramaria formosa. Journal of Basic Microbiology, 55(2): 269–75. DOI: 10.1002/jobm.201300876.

Zhiqiong T, Lin B, Zhang R. 2013. A Novel Antifungal Protein of Bacillus subtilis B25. SpringerPlus, 2(543): 1–6. DOI: 10.1186/2193-1801-2-543

Publicado

2020-02-26

Cómo citar

Arias Londoño, M. A., Zapata Ocampo, P. A., Mosquera Arévalo, Ángela R., Sánchez Torres, J. D., & Atehortúa Garcés, L. (2020). Determinación de proteínas antifúngicas de cultivos sumergidos del hongo medicinal <i>Ganoderma lucidum</i> (Ganodermataceae) con actividad sobre el hongo fitopatógeno <i>Mycosphaerella fijiensis</i> (Mycosphaerellaceae). Actualidades Biológicas, 41(111), 1–12. https://doi.org/10.17533/udea.acbi.v41n111a04

Número

Sección

Artículos completos

Artículos más leídos del mismo autor/a