Cianobacterias y microalgas como fuentes potenciales de biofertilizantes: una revisión

Autores/as

DOI:

https://doi.org/10.17533/udea.acbi/v46n120a06

Palabras clave:

agricultura, bioestimulante, fijación de nitrógeno, promotor de crecimiento

Resumen

Las cianobacterias y las microalgas representan fuentes prometedoras para la producción sostenible de biofertilizantes y bioestimulantes, que pueden mejorar el rendimiento, la calidad de los cultivos y contribuir a la seguridad alimentaria. Sin embargo, a pesar de su potencial, su exploración sigue siendo incompleta, obstaculizada por los desafíos técnicos y económicos que surgen cuando se intenta escalar la producción. El objetivo principal de esta revisión es profundizar en los compuestos químicos activos responsables de las funciones de biofertilización y bioestimulación de las cianobacterias y las microalgas. También, explora las operaciones unitarias esenciales involucradas en la transformación de su biomasa en potenciales bioproductos. Además, esta revisión destaca estudios que han empleado cianobacterias y microalgas como fuentes de biofertilizante en diversos cultivos, describiendo su modo de acción y aplicación. Mediante la integración del procesamiento de cianobacterias y microalgas con otras herramientas biotecnológicas avanzadas, se puede mejorar significativamente la viabilidad de estos productos para la agricultura sostenible.

|Resumen
= 752 veces | PDF (ENGLISH)
= 326 veces| | HTML (ENGLISH)
= 4 veces| | XML (ENGLISH)
= 5 veces| | EPUB (ENGLISH)
= 5 veces| | GRAPHICAL ABSTRACT (ENGLISH)
= 19 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Camila Marín-Marín, Universidad CES

Grupo ICIF, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia.

José Alberto Estrada , Universidad CES

Grupo ICIF, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia.

Juan Martín Delgado-Naranjo, Universidad CES

Grupo ICIF, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia.

Paola Andrea Zapata-Ocampo, Universidad CES

Grupo ICIF, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia.

Mariana Peñuela-Vásquez, Universidad de Antioquia

Grupo de Bioprocesos, Departamento de Ingeniería Chímica, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.

 

Citas

Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2019). Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8), 981–998. https://doi.org/10.1080/07388551.2019.1654972

Acea, M. (2003). Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biology and Biochemistry, 35(4), 513–524. https://doi.org/10.1016/S0038-0717(03)00005-1

Afkairin, A., Ippolito, J. A., Stromberger, M., & Davis, J. G. (2021). Solubilization of organic phosphorus sources by cyanobacteria and a commercially available bacterial consortium. Applied Soil Ecology, 162, 103900. https://doi.org/10.1016/j.apsoil.2021.103900

Allaf, M. M., & Peerhossaini, H. (2022). Cyanobacteria: Model microorganisms and beyond. Microorganisms, 10(4), 696. https://doi.org/10.3390/microorganisms10040696

Alobwede, E., Leake, J. R., & Pandhal, J. (2019). Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma, 334, 113–123. https://doi.org/10.1016/j.geoderma.2018.07.049

Araujo Vidal, D. R., Hernández Benítez, R. H., & Vanegas Guerrero, J. (2018). Efecto de la inoculación de cianobacterias en cultivos de interés comercial en zonas semiáridas de la Guajira - Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20–31. https://doi.org/10.23850/24220582.889

Arias, D. M., Ortíz-Sánchez, E., Okoye, P. U., Rodríguez-Rangel, H., Balbuena Ortega, A., Longoria, A., Domínguez-Espíndola, R., & Sebastian, P. J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Science of the Total Environment, 794, 148636. https://doi.org/10.1016/j.scitotenv.2021.148636

Arjjumend, H., & Koutouki, K. (2020). Legal barriers and quality compliance in the business of biofertilizers and biopesticides in India. Journal of Legal Studies, 26(40), 81–101. https://doi.org/10.2478/jles-2020-0013

Badr, O. A. M., EL-Shawaf, I. I. S., El-Garhy, H. A. S., Moustafa, M. M. A., & Ahmed-Farid, O. A. (2019). Antioxidant activity and phycoremediation ability of four cyanobacterial isolates obtained from a stressed aquatic system. Molecular Phylogenetics and Evolution, 134, 300–310. https://doi.org/10.1016/j.ympev.2019.01.018

Bao, J., Zhuo, C., Zhang, D., Li, Y., Hu, F., Li, H., Su, Z., Liang, Y., & He, H. (2021). Potential applicability of a cyanobacterium as a biofertilizer and biopesticide in rice fields. Plant and Soil, 463, 97-112. https://doi.org/10.1007/s11104-021-04899-9

Bartosh, Y., & Banks, C. J. (2007). Algal growth response and survival in a range of light and temperature conditions: implications for non-steady-state conditions in waste stabilisation ponds. Water Science and Technology, 55(11), 211–218. https://doi.org/10.2166/wst.2007.365

Baweja, P., Kumar, S., & Kumar, G. (2019). Organic fertilizer from algae: A novel approach towards sustainable agriculture in Giri, B., Prasad, R., Wu, QS., Varma, A. (Eds.), Biofertilizers for Sustainable Agriculture and Environment. Soil Biology (Vol 55, pp. 353-370). Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_16

Bello, A. S., Saadaoui, I., & Ben-Hamadou, R. (2021). “Beyond the source of bioenergy”: Microalgae in modern agriculture as a biostimulant, biofertilizer, and anti-abiotic stress. Agronomy, 11(8), 1610. https://doi.org/10.3390/agronomy11081610

Bhalamurugan, G. L., Valerie, O., & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 23(3), 229–241. https://doi.org/10.4491/eer.2017.220

Bispo, R. L. B., Ceccato-Antonini, S. R., Takita, M. A., & Rosa-Magri, M. M. (2023). Exogenous indole-3-acetic acid production and phosphate solubilization by Chlorella vulgaris Beijerinck in heterotrophic conditions. Fermentation, 9(2), 116. https://doi.org/10.3390/fermentation9020116

Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Computers and Electronics in Agriculture, 76(2), 131-147. https://doi.org/10.1016/j.compag.2011.01.015

Boraste, A., Vamsi, K. K., Jhadav, A., Khairnar, Y., Gupta, N., Trivedi, S., Patil, P., Gupta, G., Gupta, M., Mujapara, A. K., & Joshi, B. (2009). Biofertilizers: A novel tool for agriculture. International Journal of Microbiology Research, 1(2), 23–31. https://doi.org/10.9735/0975-5276.1.2.23-31

Boussiba, S. (1988). N2-Fixing cyanobacteria as nitrogen biofertilizer-A study with the isolate Anabaena azollae. Symbiosis, 6, 129–138.

Carvajal-Muñoz, J. S., & Carmona-Garcia, C. E. (2012). Benefits and limitations of biofertilization in agricultural practices. Livestock Research for Rural Development, 24(43). http://www.lrrd.org/lrrd24/3/carv24043.htm

Castelló, M. L., Pariente, G., Andrés, A., & Ortolá, M. D. (2018). Evaluation of strategies for preservation of microalgae Chlorella. Journal of Food Processing and Preservation, 42(2), 1–8. https://doi.org/10.1111/jfpp.13518

Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J.-S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332–344. https://doi.org/10.1016/j.jtice.2018.05.039

Chookalaii, H., Riahi, H., Shariatmadari, Z., Mazarei, Z., & Hashtroudi, M. S. (2020). Enhancement of total flavonoid and phenolic contents in Plantago major L. with plant growth promoting cyanobacteria. Journal of Agricultural Science and Technology, 22(2), 505–518. http://jast.modares.ac.ir/article-23-21403-en.html

Colla, G., & Rouphael, Y. (2020). Microalgae: New source of plant biostimulants. Agronomy, 10(9), 1–4. https://doi.org/10.3390/agronomy10091240

Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28(4), 2367–2377. https://doi.org/10.1007/s10811-015-0775-2

Corrêa, P. S., Morais Júnior, W. G., Martins, A. A., Caetano, N. S., & Mata, T. M. (2021). Microalgae biomolecules: Extraction, separation and purification methods. Processes, 9(1), 10. https://doi.org/10.3390/pr9010010

Deepika, P., & MubarakAli, D. (2020). Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatalysis and Agricultural Biotechnology, 28, 101701. https://doi.org/10.1016/j.bcab.2020.101701

Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production, 253, 119770. https://doi.org/10.1016/j.jclepro.2019.119770

Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S., & Sampathkumar, P. (2019). The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization, 10(5), 1101–1110. https://doi.org/10.1007/s12649-017-0123-7

Dineshkumar, R., Subramanian, J., Arumugam, A., Ahamed Rasheeq, A., & Sampathkumar, P. (2020). Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste and Biomass Valorization, 11(1), 77–87. https://doi.org/10.1007/s12649-018-0466-8

Esch, C. (2014). A Native Cyanobacteria, Nostoc, as a Biofertilizer [Undergraduate Thesis, Western Kentucky University]. https://digitalcommons.wku.edu/stu_hon_theses/460/

Ferreira, A., Bastos, C. R. V., Marques-dos-Santos, C., Acién-Fernandez, F. G., & Gouveia, L. (2023). Algaeculture for agriculture: from past to future. Frontiers in Agronomy, 5, 1–26. https://doi.org/10.3389/fagro.2023.1064041

Garcia-Pichel, F. (2023). The microbiology of biological soil crusts. Annual Review of Microbiology, 77(1), 149–171. https://doi.org/10.1146/annurev-micro-032521-015202

Gonçalves, A. L. (2021). The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Applied Sciences (Switzerland), 11(2), 1–21. https://doi.org/10.3390/app11020871

Govindasamy, R., Gayathiri, E., Sankar, S., Venkidasamy, B., Prakash, P., Rekha, K., Savaner, V., Pari, A., Thirumalaivasan, N., & Thiruvengadam, M. (2022). Emerging trends of nanotechnology and genetic engineering in cyanobacteria to optimize production for future applications. Life, 12(12), 2013. https://doi.org/10.3390/life12122013

Govindasamy, P., Muthusamy, S. K., Bagavathiannan, M., Mowrer, J., Jagannadham, P. T. K., Maity, A., Halli, H. M., G. K., S., Vadivel, R., T. K., D., Raj, R., Pooniya, V., Babu, S., Rathore, S. S., L., M., & Tiwari, G. (2023). Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14(3), 1–19. https://doi.org/10.3389/fpls.2023.1121073

Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based techno functional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137

Grzesik, M., & Romanowska-Duda, Z. (2015). Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Polish Journal of Environmental Studies, 24(3), 1003–1012. https://doi.org/10.15244/pjoes/34667

Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526

Hristozkova, M., Gigova, L., Geneva, M., Stancheva, I., Velikova, V., & Marinova, G. (2018). Influence of mycorrhizal fungi and microalgae dual inoculation on basil plants performance. Gesunde Pflanzen, 70(2), 99–107. https://doi.org/10.1007/s10343-018-0420-5

Hussain, A., & Hasnain, S. (2011). Phytostimulation and biofertilization in wheat by cyanobacteria. Journal of Industrial Microbiology and Biotechnology, 38(1), 85–92. https://doi.org/10.1007/s10295-010-0833-3

ICA (2020). Resolución No. 068370. https://www.ica.gov.co/normatividad/normas-ica/resoluciones-oficinas-nacionales/2020?page=5

Issa, A. A., Abd-All, M. H., & Ohyama, T. (2014). Nitrogen fixing cyanobacteria: Future prospect in Ohyama, T. (Ed.), Advances in Biology and Ecology of Nitrogen Fixation (pp. 23-48). InTech. https://doi.org/10.5772/56995

Joshi, H., Shourie, A., & Singh, A. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture in Singh, P.K., Kumar, A., Singh, V.K., Shrivastava, A.K. (Eds.), Advances in Cyanobacterial Biology (pp. 385-396). Academic Press. https://doi.org/10.1016/b978-0-12-819311-2.00025-5

Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, 1–7. https://doi.org/10.1155/2019/4917256

Khan, M. S., Zaidi, A., & Musarrat, J. (2014). Phosphate solubilizing microorganisms: Principles and application of microphos technology. Springer International Publishing. https://doi.org/10.1007/978-3-319-08216-5

Khan, S. A., Sharma, G. K., Malla, F. A., Kumar, A., Rashmi, & Gupta, N. (2019). Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. Journal of Cleaner Production, 211, 1412–1419. https://doi.org/10.1016/j.jclepro.2018.11.281

Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2020). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304, 122996. https://doi.org/10.1016/j.biortech.2020.122996

Khurana, A., & Kumar, V. (2022). State of Biofertilizers and Organic Fertilizers in India. https://www.cseindia.org/state-of-biofertilizers-and-organic-fertilizers-in-india-11235

Kim, S.K. (2015). Handbook of marine microalgae. Elsevier Inc. https://doi.org/10.1016/C2013-0-19117-9

Kim, M.-J., Shim, C.-K., Kim, Y.-K., Ko, B.-G., Park, J.-H., Hwang, S.-G., & Kim, B.-H. (2018). Effect of biostimulator Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm. The Plant Pathology Journal, 34(6), 567–574. https://doi.org/10.5423/PPJ.FT.11.2018.0254

Kollmen, J., & Strieth, D. (2022). the beneficial effects of cyanobacterial co-culture on plant growth. Life, 12(2), 223. https://doi.org/10.3390/life12020223

Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology in Mishra, A.K., Tiwari, D.N., Rai, A.N. (Eds.), Cyanobacteria: From basic science to applications (pp. 327-346). Academic Press. https://doi.org/10.1016/B978-0-12-814667-5.00016-7

Lichner, L., Hallett, P. D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., & Homolák, M. (2013). Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68. https://doi.org/10.1016/j.catena.2012.02.016

Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends in Plant Science, 20(5), 273–282. https://doi.org/10.1016/j.tplants.2015.01.006

Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162, 31–87. https://doi.org/10.1016/bs.agron.2020.02.001

Mahapatra, D. M., Chanakya, H. N., Joshi, N. V., Ramachandra, T. V., & Murthy, G. S. (2018). Algae-Based Biofertilizers: A Biorefinery Approach in Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (Eds.), Microorganisms for green revolution (Vol. 2, pp. 177–196). Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_10

Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., D’Acqui, L. P., Nordenberg, S., & Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290(1–2), 209–219. https://doi.org/10.1007/s11104-006-9153-9

Malusá, E., Sas-Paszt, L., & Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal, 2012, 1-12. https://doi.org/10.1100/2012/491206

Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. In Applied Microbiology and Biotechnology (Vol. 98, Issue 15, pp. 6599–6607). Springer Verlag. https://doi.org/10.1007/s00253-014-5828-y

Manjunath, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., Hossain, F., Nain, L., Shivay, Y. S., Rai, A. B., & Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon, 2(2). https://doi.org/10.1016/j.heliyon.2016.e00066

Markets and Markets (2023). Biofertilizers market by type (nitrogen-fixing, phosphate solubilizing & mobilizing, potassium solubilizing & mobilizing), mode of application (soil treatment, seed treatment), form, crop type and region - global forecast to 2028. https://www.marketsandmarkets.com/Market-Reports/compound-biofertilizers-customized-fertilizers-market-856.html

Martínez-Francés, E., & Escudero-Oñate, C. (2018). Cyanobacteria and microalgae in the production of valuable bioactive compounds in Jacob-Lopes, E., Queiroz-Zepka, L., Queiroz, M.I. (Eds.), Microalgal Biotechnology (pp. 105-128). InTech. https://doi.org/10.5772/intechopen.74043

Masojídek, J., & Torzillo, G. (2008). Mass cultivation of freshwater microalgae in Jørgensen, S.E., Fath, B.D. (Eds.), Encyclopedia of Ecology (pp. 2226–2235). Academic Press. https://doi.org/10.1016/B978-008045405-4.00830-2

Mata, T. M., Oliveira, G. M., Monteiro, H., Silva, G. V., Caetano, N. S., & Martins, A. A. (2021). Indoor air quality improvement using nature-based solutions: Design proposals to greener cities. International Journal of Environmental Research and Public Health, 18(16), 8472. https://doi.org/10.3390/ijerph18168472

Menamo, M., & Wolde, Z. (2013). Effect of cyanobacteria application as biofertilizer on growth, yield and yield components of romaine lettuce (Lactuca sativa L.) on soils of Ethiopia. American Scientific Research Journal for Engineering, 4(1), 50–58. http://asrjetsjournal.org/

Moorthy, K., & P, M. (2012). Effect of cyanospray fertilizer on plant morphological, biochemical characteristics and leaf gel yield of Aloe barbadensis Miller (Aloe vera) in pot experiment. International Journal of Environmental Sciences, 2(3), 1512-1520. https://doi.org/10.6088/ijes.00202030036

Mutale-Joan, C., Sbabou, L., & Hicham, E. A. (2023). Microalgae and cyanobacteria: How exploiting these microbial resources can address the underlying challenges related to food sources and sustainable agriculture: A review. Journal of Plant Growth Regulation, 42(1), 1-20. https://doi.org/10.1007/s00344-021-10534-9

Narala, R. R., Garg, S., Sharma, K. K., Thomas-Hall, S. R., Deme, M., Li, Y., & Schenk, P. M. (2016). Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Frontiers in Energy Research, 4(29), 10. https://doi.org/10.3389/fenrg.2016.00029

Nitsos, C., Filali, R., Taidi, B., & Lemaire, J. (2020). Current and novel approaches to downstream processing of microalgae: A review. Biotechnology Advances, 45, 107650. https://doi.org/10.1016/j.biotechadv.2020.107650

Oliveira, G. A., Carissimi, E., Monje-Ramírez, I., Velasquez-Orta, S. B., Rodrigues, R. T., & Ledesma, M. T. O. (2018). Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresource Technology, 259, 334–342. https://doi.org/10.1016/j.biortech.2018.03.072

Ortiz, G. (2015). Evaluación del valor como biofertilizantes de Nostoc sp. & Anabaena sp. en plántulas de menta (Mentha specata). [Undergraduate Thesis, Universidad Santo Tomás]. https://repository.usta.edu.co/handle/11634/9453

Osman, M. E. H., El-Sheekh, M. M., El-Naggar, A. H., & Gheda, S. F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46(8), 861–875. https://doi.org/10.1007/s00374-010-0491-7

Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña-Aranda, J. J. P., Ramírez-Gamboa, D., Meléndez-Sánchez, E. R., López-Arellanes, M. E., Castañeda-Antonio, M. D., Coronado-Apodaca, K. G., Gomes Araújo, R., Sosa-Hernández, J. E., Melchor-Martínez, E. M., Iqbal, H. M. N., Parra-Saldivar, R., & Martínez-Ruiz, M. (2023). Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Marine Drugs, 21(2), 93. https://doi.org/10.3390/md21020093

Patel, V. K., Das, A., Kumari, R., & Kajla, S. (2023). Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Research, 71, 103068. https://doi.org/10.1016/j.algal.2023.103068

Pathak, J., Rajneesh, Maurya, P. K., Singh, S. P., Häder, D. P., & Sinha, R. P. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives. Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00007

Poveda, J. (2021). Cyanobacteria in plant health: Biological strategy against abiotic and biotic stresses. Crop Protection, 141, 105450. https://doi.org/10.1016/j.cropro.2020.105450

Prasanna, R., Ramakrishnan, B., Ranjan, K., Venkatachalam, S., Kanchan, A., Solanki, P., Monga, D., Shivay, Y. S., & Kranthi, S. (2016). Microbial inoculants with multifaceted traits suppress rhizoctonia populations and promote plant growth in cotton. Journal of Phytopathology, 164(11–12), 1030–1042. https://doi.org/10.1111/jph.12524

Qiu, B., Liu, J., Liu, Z., & Liu, S. (2002). Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. Journal of Applied Phycology, 14(5), 423–429. https://doi.org/10.1023/A:1022198605743

Rahman, Md. M., Hosano, N., & Hosano, H. (2022). Recovering microalgal bioresources: A review of cell disruption methods and extraction technologies. Molecules, 27(9), 2786. https://doi.org/10.3390/molecules27092786

Rai, A. N., Singh, A. K., & Syiem, M. B. (2018). Plant growth-promoting abilities in cyanobacteria. In Mishra, A.K., Tiwari, D.N., Rai, A.N. (Eds.), Cyanobacteria: From Basic Science to Applications (pp. 459–476). Academic Press. https://doi.org/10.1016/B978-0-12-814667-5.00023-4

Rakshit, A., Singh Meena, V., Parihar, M., Singh, H. B., & Sing, A. K. (2021). Biofertilizers advances in bio-inoculants. Elsevier. https://doi.org/10.1016/C2019-0-03689-8

Ramakrishnan, B., Maddela, N. R., Venkateswarlu, K., & Megharaj, M. (2023). Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view. Environmental Science: Advances, 2(4), 586–611. https://doi.org/10.1039/D2VA00158F

Ray, K., Mukherjee, C., & Ghosh, A. N. (2013). a way to curb phosphorus toxicity in the environment: Use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorus biofertilizer for Indian agriculture. Environmental Science & Technology, 47(20), 11378–11379. https://doi.org/10.1021/es403057c

Refaay, D. A., El-Marzoki, E. M., Abdel-Hamid, M. I., & Haroun, S. A. (2021). Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology, 33(6), 3807–3815. https://doi.org/10.1007/s10811-021-02584-z

Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., Santosh Babu, y, Singh, R., Shivay, Y. S., & Nain, L. (2015). Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 23, 6608-6620. https://doi.org/10.1007/s11356-015-5884-6

Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004

Richmond, A., & Hu, Q. (2013). Handbook of microalgal culture. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470995280

Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034

Rodgers, G. A., Bergman, B., Henriksson, E., & Udris, M. (1979). Utilisation of blue-green algae as biofertilisers. Plant and Soil, 52(1), 99–107. https://doi.org/10.1007/BF02197736

Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192. https://doi.org/10.3390/agronomy9040192

Saeid, A., & Chojnacka, K. (2018). Fertilizers: Need for new strategies in Chandran, S., Unni, M.R., Thomas, S. (Eds.), Organic Farming: Global Perspectives and Methods. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813272-2.00004-5

Salamah, A., Fadilah, N., Khoiriyah, I., & Hendrayanti, D. (2019). Application of N2-fixing cyanobacteria Nostoc sp. SO-A31 to hydroponically grown water spinach (Ipomoea aquatic L.). Agrivita, 41(2), 325–334. https://doi.org/10.17503/agrivita.v41i2.1867

Santini, G., Rodolfi, L., Biondi, N., Sampietro, G., & Tredici, M. R. (2022). Effects of cyanobacterial-based biostimulants on plant growth and development: a case study on basil (Ocimum basilicum L.). Journal of Applied Phycology, 34(4), 2063–2073. https://doi.org/10.1007/s10811-022-02781-4

Santos, F. M., & Pires, J. C. M. (2020). Microalgae cultivation in wastewater to recycle nutrients as biofertilizer in Gothandam, K.M., Ranjan, S., Dasgupta, N., Lichtfouse, E. (Eds.), Environmental Biotechnology (Vol. 1, pp. 71–86). https://doi.org/10.1007/978-3-030-38192-9_3

Sharma, N. K., Rai, A. K., & Stal, L. J. (2014). Cyanobacteria - an economic perspective. Wiley. https://doi.org/10.1002/9781118402238

Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Incharoensakdi, A., Cornejo, P., Kamaraj, B., & Chi, N. T. L. (2021). Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 268, 129323. https://doi.org/10.1016/j.chemosphere.2020.129323

Simbaña, A. (2019). Evaluación de un fertilizante microalgal en tomate (Solanum lycopersicum L.) [Undergraduate thesis, Universidad Central del Ecuador]. https://www.dspace.uce.edu.ec/entities/publication/64ee36f9-1af0-4882-babb-dae44bac0353

Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7. Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2016.00529

Song, X., Zhang, J., Peng, C., & Li, D. (2021). Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields. Agriculture, Ecosystems & Environment, 312, 107320. https://doi.org/10.1016/j.agee.2021.107320

Stal, L. J. (2015). Nitrogen fixation in cyanobacteria. Encyclopedia of Life Sciences, 1–9. https://doi.org/10.1002/9780470015902.a0021159.pub2

Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116-129. https://doi.org/10.1080/21655979.2020.1711626

Toribio, A. J., Suárez-Estrella, F., Jurado, M. M., López, M. J., López-González, J. A., & Moreno, J. (2020). Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Reports, 26, e0049. https://doi.org/10.1016/J.BTRE.2020.E00449

Toribio, A. J., Jurado, M. M., Suárez-Estrella, F., López-González, J. A., Martínez-Gallardo, M. R., & López, M. J. (2021). Application of sonicated extracts of cyanobacteria and microalgae for the mitigation of bacterial canker in tomato seedlings. Journal of Applied Phycology, 33(6), 3817–3829. https://doi.org/10.1007/S10811-021-02599-6

Traon, D., Amat, L., Zotz, F., & du Jardin, P. (2014). A legal framework for plant biostimulants and agronomic fertiliser additives in the EU report for the European Commission Enterprise & Industry Directorate-General. https://op.europa.eu/en/publication-detail/-/publication/dbeffd43-98a5-4e39-a930-7dfa21816f8c

Wang, M., Chen, S., Zhou, W., Yuan, W., & Wang, D. (2020). Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Research, 46, 101794. https://doi.org/10.1016/j.algal.2020.101794

Zuccaro, G., Yousuf, A., Pollio, A., & Steyer, J. (2020). Microalgae cultivation systems. In Yousuf, A. (Ed). Microalgae Cultivation for Biofuels Production (pp. 11–29). Academic Press. https://doi.org/10.1016/B978-0-12-817536-1.00002-3

Publicado

2024-02-18

Cómo citar

Marín Marín, C., Estrada , J. A., Delgado Naranjo, J. M., Zapata Ocampo, P. A., & Peñuela Vásquez, M. (2024). Cianobacterias y microalgas como fuentes potenciales de biofertilizantes: una revisión. Actualidades Biológicas, 46(120), e4606. https://doi.org/10.17533/udea.acbi/v46n120a06

Número

Sección

Artículos de revisión

Artículos más leídos del mismo autor/a