Cianobacterias y microalgas como fuentes potenciales de biofertilizantes: una revisión
DOI:
https://doi.org/10.17533/udea.acbi/v46n120a06Palabras clave:
agricultura, bioestimulante, fijación de nitrógeno, promotor de crecimientoResumen
Las cianobacterias y las microalgas representan fuentes prometedoras para la producción sostenible de biofertilizantes y bioestimulantes, que pueden mejorar el rendimiento, la calidad de los cultivos y contribuir a la seguridad alimentaria. Sin embargo, a pesar de su potencial, su exploración sigue siendo incompleta, obstaculizada por los desafíos técnicos y económicos que surgen cuando se intenta escalar la producción. El objetivo principal de esta revisión es profundizar en los compuestos químicos activos responsables de las funciones de biofertilización y bioestimulación de las cianobacterias y las microalgas. También, explora las operaciones unitarias esenciales involucradas en la transformación de su biomasa en potenciales bioproductos. Además, esta revisión destaca estudios que han empleado cianobacterias y microalgas como fuentes de biofertilizante en diversos cultivos, describiendo su modo de acción y aplicación. Mediante la integración del procesamiento de cianobacterias y microalgas con otras herramientas biotecnológicas avanzadas, se puede mejorar significativamente la viabilidad de estos productos para la agricultura sostenible.
Descargas
Citas
Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2019). Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8), 981–998. https://doi.org/10.1080/07388551.2019.1654972
Acea, M. (2003). Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biology and Biochemistry, 35(4), 513–524. https://doi.org/10.1016/S0038-0717(03)00005-1
Afkairin, A., Ippolito, J. A., Stromberger, M., & Davis, J. G. (2021). Solubilization of organic phosphorus sources by cyanobacteria and a commercially available bacterial consortium. Applied Soil Ecology, 162, 103900. https://doi.org/10.1016/j.apsoil.2021.103900
Allaf, M. M., & Peerhossaini, H. (2022). Cyanobacteria: Model microorganisms and beyond. Microorganisms, 10(4), 696. https://doi.org/10.3390/microorganisms10040696
Alobwede, E., Leake, J. R., & Pandhal, J. (2019). Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma, 334, 113–123. https://doi.org/10.1016/j.geoderma.2018.07.049
Araujo Vidal, D. R., Hernández Benítez, R. H., & Vanegas Guerrero, J. (2018). Efecto de la inoculación de cianobacterias en cultivos de interés comercial en zonas semiáridas de la Guajira - Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20–31. https://doi.org/10.23850/24220582.889
Arias, D. M., Ortíz-Sánchez, E., Okoye, P. U., Rodríguez-Rangel, H., Balbuena Ortega, A., Longoria, A., Domínguez-Espíndola, R., & Sebastian, P. J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Science of the Total Environment, 794, 148636. https://doi.org/10.1016/j.scitotenv.2021.148636
Arjjumend, H., & Koutouki, K. (2020). Legal barriers and quality compliance in the business of biofertilizers and biopesticides in India. Journal of Legal Studies, 26(40), 81–101. https://doi.org/10.2478/jles-2020-0013
Badr, O. A. M., EL-Shawaf, I. I. S., El-Garhy, H. A. S., Moustafa, M. M. A., & Ahmed-Farid, O. A. (2019). Antioxidant activity and phycoremediation ability of four cyanobacterial isolates obtained from a stressed aquatic system. Molecular Phylogenetics and Evolution, 134, 300–310. https://doi.org/10.1016/j.ympev.2019.01.018
Bao, J., Zhuo, C., Zhang, D., Li, Y., Hu, F., Li, H., Su, Z., Liang, Y., & He, H. (2021). Potential applicability of a cyanobacterium as a biofertilizer and biopesticide in rice fields. Plant and Soil, 463, 97-112. https://doi.org/10.1007/s11104-021-04899-9
Bartosh, Y., & Banks, C. J. (2007). Algal growth response and survival in a range of light and temperature conditions: implications for non-steady-state conditions in waste stabilisation ponds. Water Science and Technology, 55(11), 211–218. https://doi.org/10.2166/wst.2007.365
Baweja, P., Kumar, S., & Kumar, G. (2019). Organic fertilizer from algae: A novel approach towards sustainable agriculture in Giri, B., Prasad, R., Wu, QS., Varma, A. (Eds.), Biofertilizers for Sustainable Agriculture and Environment. Soil Biology (Vol 55, pp. 353-370). Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_16
Bello, A. S., Saadaoui, I., & Ben-Hamadou, R. (2021). “Beyond the source of bioenergy”: Microalgae in modern agriculture as a biostimulant, biofertilizer, and anti-abiotic stress. Agronomy, 11(8), 1610. https://doi.org/10.3390/agronomy11081610
Bhalamurugan, G. L., Valerie, O., & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 23(3), 229–241. https://doi.org/10.4491/eer.2017.220
Bispo, R. L. B., Ceccato-Antonini, S. R., Takita, M. A., & Rosa-Magri, M. M. (2023). Exogenous indole-3-acetic acid production and phosphate solubilization by Chlorella vulgaris Beijerinck in heterotrophic conditions. Fermentation, 9(2), 116. https://doi.org/10.3390/fermentation9020116
Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Computers and Electronics in Agriculture, 76(2), 131-147. https://doi.org/10.1016/j.compag.2011.01.015
Boraste, A., Vamsi, K. K., Jhadav, A., Khairnar, Y., Gupta, N., Trivedi, S., Patil, P., Gupta, G., Gupta, M., Mujapara, A. K., & Joshi, B. (2009). Biofertilizers: A novel tool for agriculture. International Journal of Microbiology Research, 1(2), 23–31. https://doi.org/10.9735/0975-5276.1.2.23-31
Boussiba, S. (1988). N2-Fixing cyanobacteria as nitrogen biofertilizer-A study with the isolate Anabaena azollae. Symbiosis, 6, 129–138.
Carvajal-Muñoz, J. S., & Carmona-Garcia, C. E. (2012). Benefits and limitations of biofertilization in agricultural practices. Livestock Research for Rural Development, 24(43). http://www.lrrd.org/lrrd24/3/carv24043.htm
Castelló, M. L., Pariente, G., Andrés, A., & Ortolá, M. D. (2018). Evaluation of strategies for preservation of microalgae Chlorella. Journal of Food Processing and Preservation, 42(2), 1–8. https://doi.org/10.1111/jfpp.13518
Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J.-S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332–344. https://doi.org/10.1016/j.jtice.2018.05.039
Chookalaii, H., Riahi, H., Shariatmadari, Z., Mazarei, Z., & Hashtroudi, M. S. (2020). Enhancement of total flavonoid and phenolic contents in Plantago major L. with plant growth promoting cyanobacteria. Journal of Agricultural Science and Technology, 22(2), 505–518. http://jast.modares.ac.ir/article-23-21403-en.html
Colla, G., & Rouphael, Y. (2020). Microalgae: New source of plant biostimulants. Agronomy, 10(9), 1–4. https://doi.org/10.3390/agronomy10091240
Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28(4), 2367–2377. https://doi.org/10.1007/s10811-015-0775-2
Corrêa, P. S., Morais Júnior, W. G., Martins, A. A., Caetano, N. S., & Mata, T. M. (2021). Microalgae biomolecules: Extraction, separation and purification methods. Processes, 9(1), 10. https://doi.org/10.3390/pr9010010
Deepika, P., & MubarakAli, D. (2020). Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatalysis and Agricultural Biotechnology, 28, 101701. https://doi.org/10.1016/j.bcab.2020.101701
Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production, 253, 119770. https://doi.org/10.1016/j.jclepro.2019.119770
Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S., & Sampathkumar, P. (2019). The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization, 10(5), 1101–1110. https://doi.org/10.1007/s12649-017-0123-7
Dineshkumar, R., Subramanian, J., Arumugam, A., Ahamed Rasheeq, A., & Sampathkumar, P. (2020). Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste and Biomass Valorization, 11(1), 77–87. https://doi.org/10.1007/s12649-018-0466-8
Esch, C. (2014). A Native Cyanobacteria, Nostoc, as a Biofertilizer [Undergraduate Thesis, Western Kentucky University]. https://digitalcommons.wku.edu/stu_hon_theses/460/
Ferreira, A., Bastos, C. R. V., Marques-dos-Santos, C., Acién-Fernandez, F. G., & Gouveia, L. (2023). Algaeculture for agriculture: from past to future. Frontiers in Agronomy, 5, 1–26. https://doi.org/10.3389/fagro.2023.1064041
Garcia-Pichel, F. (2023). The microbiology of biological soil crusts. Annual Review of Microbiology, 77(1), 149–171. https://doi.org/10.1146/annurev-micro-032521-015202
Gonçalves, A. L. (2021). The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Applied Sciences (Switzerland), 11(2), 1–21. https://doi.org/10.3390/app11020871
Govindasamy, R., Gayathiri, E., Sankar, S., Venkidasamy, B., Prakash, P., Rekha, K., Savaner, V., Pari, A., Thirumalaivasan, N., & Thiruvengadam, M. (2022). Emerging trends of nanotechnology and genetic engineering in cyanobacteria to optimize production for future applications. Life, 12(12), 2013. https://doi.org/10.3390/life12122013
Govindasamy, P., Muthusamy, S. K., Bagavathiannan, M., Mowrer, J., Jagannadham, P. T. K., Maity, A., Halli, H. M., G. K., S., Vadivel, R., T. K., D., Raj, R., Pooniya, V., Babu, S., Rathore, S. S., L., M., & Tiwari, G. (2023). Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14(3), 1–19. https://doi.org/10.3389/fpls.2023.1121073
Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based techno functional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137
Grzesik, M., & Romanowska-Duda, Z. (2015). Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Polish Journal of Environmental Studies, 24(3), 1003–1012. https://doi.org/10.15244/pjoes/34667
Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526
Hristozkova, M., Gigova, L., Geneva, M., Stancheva, I., Velikova, V., & Marinova, G. (2018). Influence of mycorrhizal fungi and microalgae dual inoculation on basil plants performance. Gesunde Pflanzen, 70(2), 99–107. https://doi.org/10.1007/s10343-018-0420-5
Hussain, A., & Hasnain, S. (2011). Phytostimulation and biofertilization in wheat by cyanobacteria. Journal of Industrial Microbiology and Biotechnology, 38(1), 85–92. https://doi.org/10.1007/s10295-010-0833-3
ICA (2020). Resolución No. 068370. https://www.ica.gov.co/normatividad/normas-ica/resoluciones-oficinas-nacionales/2020?page=5
Issa, A. A., Abd-All, M. H., & Ohyama, T. (2014). Nitrogen fixing cyanobacteria: Future prospect in Ohyama, T. (Ed.), Advances in Biology and Ecology of Nitrogen Fixation (pp. 23-48). InTech. https://doi.org/10.5772/56995
Joshi, H., Shourie, A., & Singh, A. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture in Singh, P.K., Kumar, A., Singh, V.K., Shrivastava, A.K. (Eds.), Advances in Cyanobacterial Biology (pp. 385-396). Academic Press. https://doi.org/10.1016/b978-0-12-819311-2.00025-5
Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, 1–7. https://doi.org/10.1155/2019/4917256
Khan, M. S., Zaidi, A., & Musarrat, J. (2014). Phosphate solubilizing microorganisms: Principles and application of microphos technology. Springer International Publishing. https://doi.org/10.1007/978-3-319-08216-5
Khan, S. A., Sharma, G. K., Malla, F. A., Kumar, A., Rashmi, & Gupta, N. (2019). Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. Journal of Cleaner Production, 211, 1412–1419. https://doi.org/10.1016/j.jclepro.2018.11.281
Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2020). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304, 122996. https://doi.org/10.1016/j.biortech.2020.122996
Khurana, A., & Kumar, V. (2022). State of Biofertilizers and Organic Fertilizers in India. https://www.cseindia.org/state-of-biofertilizers-and-organic-fertilizers-in-india-11235
Kim, S.K. (2015). Handbook of marine microalgae. Elsevier Inc. https://doi.org/10.1016/C2013-0-19117-9
Kim, M.-J., Shim, C.-K., Kim, Y.-K., Ko, B.-G., Park, J.-H., Hwang, S.-G., & Kim, B.-H. (2018). Effect of biostimulator Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm. The Plant Pathology Journal, 34(6), 567–574. https://doi.org/10.5423/PPJ.FT.11.2018.0254
Kollmen, J., & Strieth, D. (2022). the beneficial effects of cyanobacterial co-culture on plant growth. Life, 12(2), 223. https://doi.org/10.3390/life12020223
Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology in Mishra, A.K., Tiwari, D.N., Rai, A.N. (Eds.), Cyanobacteria: From basic science to applications (pp. 327-346). Academic Press. https://doi.org/10.1016/B978-0-12-814667-5.00016-7
Lichner, L., Hallett, P. D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., & Homolák, M. (2013). Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68. https://doi.org/10.1016/j.catena.2012.02.016
Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends in Plant Science, 20(5), 273–282. https://doi.org/10.1016/j.tplants.2015.01.006
Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162, 31–87. https://doi.org/10.1016/bs.agron.2020.02.001
Mahapatra, D. M., Chanakya, H. N., Joshi, N. V., Ramachandra, T. V., & Murthy, G. S. (2018). Algae-Based Biofertilizers: A Biorefinery Approach in Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (Eds.), Microorganisms for green revolution (Vol. 2, pp. 177–196). Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_10
Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., D’Acqui, L. P., Nordenberg, S., & Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290(1–2), 209–219. https://doi.org/10.1007/s11104-006-9153-9
Malusá, E., Sas-Paszt, L., & Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal, 2012, 1-12. https://doi.org/10.1100/2012/491206
Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. In Applied Microbiology and Biotechnology (Vol. 98, Issue 15, pp. 6599–6607). Springer Verlag. https://doi.org/10.1007/s00253-014-5828-y
Manjunath, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., Hossain, F., Nain, L., Shivay, Y. S., Rai, A. B., & Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon, 2(2). https://doi.org/10.1016/j.heliyon.2016.e00066
Markets and Markets (2023). Biofertilizers market by type (nitrogen-fixing, phosphate solubilizing & mobilizing, potassium solubilizing & mobilizing), mode of application (soil treatment, seed treatment), form, crop type and region - global forecast to 2028. https://www.marketsandmarkets.com/Market-Reports/compound-biofertilizers-customized-fertilizers-market-856.html
Martínez-Francés, E., & Escudero-Oñate, C. (2018). Cyanobacteria and microalgae in the production of valuable bioactive compounds in Jacob-Lopes, E., Queiroz-Zepka, L., Queiroz, M.I. (Eds.), Microalgal Biotechnology (pp. 105-128). InTech. https://doi.org/10.5772/intechopen.74043
Masojídek, J., & Torzillo, G. (2008). Mass cultivation of freshwater microalgae in Jørgensen, S.E., Fath, B.D. (Eds.), Encyclopedia of Ecology (pp. 2226–2235). Academic Press. https://doi.org/10.1016/B978-008045405-4.00830-2
Mata, T. M., Oliveira, G. M., Monteiro, H., Silva, G. V., Caetano, N. S., & Martins, A. A. (2021). Indoor air quality improvement using nature-based solutions: Design proposals to greener cities. International Journal of Environmental Research and Public Health, 18(16), 8472. https://doi.org/10.3390/ijerph18168472
Menamo, M., & Wolde, Z. (2013). Effect of cyanobacteria application as biofertilizer on growth, yield and yield components of romaine lettuce (Lactuca sativa L.) on soils of Ethiopia. American Scientific Research Journal for Engineering, 4(1), 50–58. http://asrjetsjournal.org/
Moorthy, K., & P, M. (2012). Effect of cyanospray fertilizer on plant morphological, biochemical characteristics and leaf gel yield of Aloe barbadensis Miller (Aloe vera) in pot experiment. International Journal of Environmental Sciences, 2(3), 1512-1520. https://doi.org/10.6088/ijes.00202030036
Mutale-Joan, C., Sbabou, L., & Hicham, E. A. (2023). Microalgae and cyanobacteria: How exploiting these microbial resources can address the underlying challenges related to food sources and sustainable agriculture: A review. Journal of Plant Growth Regulation, 42(1), 1-20. https://doi.org/10.1007/s00344-021-10534-9
Narala, R. R., Garg, S., Sharma, K. K., Thomas-Hall, S. R., Deme, M., Li, Y., & Schenk, P. M. (2016). Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Frontiers in Energy Research, 4(29), 10. https://doi.org/10.3389/fenrg.2016.00029
Nitsos, C., Filali, R., Taidi, B., & Lemaire, J. (2020). Current and novel approaches to downstream processing of microalgae: A review. Biotechnology Advances, 45, 107650. https://doi.org/10.1016/j.biotechadv.2020.107650
Oliveira, G. A., Carissimi, E., Monje-Ramírez, I., Velasquez-Orta, S. B., Rodrigues, R. T., & Ledesma, M. T. O. (2018). Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresource Technology, 259, 334–342. https://doi.org/10.1016/j.biortech.2018.03.072
Ortiz, G. (2015). Evaluación del valor como biofertilizantes de Nostoc sp. & Anabaena sp. en plántulas de menta (Mentha specata). [Undergraduate Thesis, Universidad Santo Tomás]. https://repository.usta.edu.co/handle/11634/9453
Osman, M. E. H., El-Sheekh, M. M., El-Naggar, A. H., & Gheda, S. F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46(8), 861–875. https://doi.org/10.1007/s00374-010-0491-7
Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña-Aranda, J. J. P., Ramírez-Gamboa, D., Meléndez-Sánchez, E. R., López-Arellanes, M. E., Castañeda-Antonio, M. D., Coronado-Apodaca, K. G., Gomes Araújo, R., Sosa-Hernández, J. E., Melchor-Martínez, E. M., Iqbal, H. M. N., Parra-Saldivar, R., & Martínez-Ruiz, M. (2023). Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Marine Drugs, 21(2), 93. https://doi.org/10.3390/md21020093
Patel, V. K., Das, A., Kumari, R., & Kajla, S. (2023). Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Research, 71, 103068. https://doi.org/10.1016/j.algal.2023.103068
Pathak, J., Rajneesh, Maurya, P. K., Singh, S. P., Häder, D. P., & Sinha, R. P. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives. Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00007
Poveda, J. (2021). Cyanobacteria in plant health: Biological strategy against abiotic and biotic stresses. Crop Protection, 141, 105450. https://doi.org/10.1016/j.cropro.2020.105450
Prasanna, R., Ramakrishnan, B., Ranjan, K., Venkatachalam, S., Kanchan, A., Solanki, P., Monga, D., Shivay, Y. S., & Kranthi, S. (2016). Microbial inoculants with multifaceted traits suppress rhizoctonia populations and promote plant growth in cotton. Journal of Phytopathology, 164(11–12), 1030–1042. https://doi.org/10.1111/jph.12524
Qiu, B., Liu, J., Liu, Z., & Liu, S. (2002). Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. Journal of Applied Phycology, 14(5), 423–429. https://doi.org/10.1023/A:1022198605743
Rahman, Md. M., Hosano, N., & Hosano, H. (2022). Recovering microalgal bioresources: A review of cell disruption methods and extraction technologies. Molecules, 27(9), 2786. https://doi.org/10.3390/molecules27092786
Rai, A. N., Singh, A. K., & Syiem, M. B. (2018). Plant growth-promoting abilities in cyanobacteria. In Mishra, A.K., Tiwari, D.N., Rai, A.N. (Eds.), Cyanobacteria: From Basic Science to Applications (pp. 459–476). Academic Press. https://doi.org/10.1016/B978-0-12-814667-5.00023-4
Rakshit, A., Singh Meena, V., Parihar, M., Singh, H. B., & Sing, A. K. (2021). Biofertilizers advances in bio-inoculants. Elsevier. https://doi.org/10.1016/C2019-0-03689-8
Ramakrishnan, B., Maddela, N. R., Venkateswarlu, K., & Megharaj, M. (2023). Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view. Environmental Science: Advances, 2(4), 586–611. https://doi.org/10.1039/D2VA00158F
Ray, K., Mukherjee, C., & Ghosh, A. N. (2013). a way to curb phosphorus toxicity in the environment: Use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorus biofertilizer for Indian agriculture. Environmental Science & Technology, 47(20), 11378–11379. https://doi.org/10.1021/es403057c
Refaay, D. A., El-Marzoki, E. M., Abdel-Hamid, M. I., & Haroun, S. A. (2021). Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology, 33(6), 3807–3815. https://doi.org/10.1007/s10811-021-02584-z
Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., Santosh Babu, y, Singh, R., Shivay, Y. S., & Nain, L. (2015). Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 23, 6608-6620. https://doi.org/10.1007/s11356-015-5884-6
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
Richmond, A., & Hu, Q. (2013). Handbook of microalgal culture. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470995280
Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034
Rodgers, G. A., Bergman, B., Henriksson, E., & Udris, M. (1979). Utilisation of blue-green algae as biofertilisers. Plant and Soil, 52(1), 99–107. https://doi.org/10.1007/BF02197736
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192. https://doi.org/10.3390/agronomy9040192
Saeid, A., & Chojnacka, K. (2018). Fertilizers: Need for new strategies in Chandran, S., Unni, M.R., Thomas, S. (Eds.), Organic Farming: Global Perspectives and Methods. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813272-2.00004-5
Salamah, A., Fadilah, N., Khoiriyah, I., & Hendrayanti, D. (2019). Application of N2-fixing cyanobacteria Nostoc sp. SO-A31 to hydroponically grown water spinach (Ipomoea aquatic L.). Agrivita, 41(2), 325–334. https://doi.org/10.17503/agrivita.v41i2.1867
Santini, G., Rodolfi, L., Biondi, N., Sampietro, G., & Tredici, M. R. (2022). Effects of cyanobacterial-based biostimulants on plant growth and development: a case study on basil (Ocimum basilicum L.). Journal of Applied Phycology, 34(4), 2063–2073. https://doi.org/10.1007/s10811-022-02781-4
Santos, F. M., & Pires, J. C. M. (2020). Microalgae cultivation in wastewater to recycle nutrients as biofertilizer in Gothandam, K.M., Ranjan, S., Dasgupta, N., Lichtfouse, E. (Eds.), Environmental Biotechnology (Vol. 1, pp. 71–86). https://doi.org/10.1007/978-3-030-38192-9_3
Sharma, N. K., Rai, A. K., & Stal, L. J. (2014). Cyanobacteria - an economic perspective. Wiley. https://doi.org/10.1002/9781118402238
Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Incharoensakdi, A., Cornejo, P., Kamaraj, B., & Chi, N. T. L. (2021). Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 268, 129323. https://doi.org/10.1016/j.chemosphere.2020.129323
Simbaña, A. (2019). Evaluación de un fertilizante microalgal en tomate (Solanum lycopersicum L.) [Undergraduate thesis, Universidad Central del Ecuador]. https://www.dspace.uce.edu.ec/entities/publication/64ee36f9-1af0-4882-babb-dae44bac0353
Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7. Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2016.00529
Song, X., Zhang, J., Peng, C., & Li, D. (2021). Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields. Agriculture, Ecosystems & Environment, 312, 107320. https://doi.org/10.1016/j.agee.2021.107320
Stal, L. J. (2015). Nitrogen fixation in cyanobacteria. Encyclopedia of Life Sciences, 1–9. https://doi.org/10.1002/9780470015902.a0021159.pub2
Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116-129. https://doi.org/10.1080/21655979.2020.1711626
Toribio, A. J., Suárez-Estrella, F., Jurado, M. M., López, M. J., López-González, J. A., & Moreno, J. (2020). Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Reports, 26, e0049. https://doi.org/10.1016/J.BTRE.2020.E00449
Toribio, A. J., Jurado, M. M., Suárez-Estrella, F., López-González, J. A., Martínez-Gallardo, M. R., & López, M. J. (2021). Application of sonicated extracts of cyanobacteria and microalgae for the mitigation of bacterial canker in tomato seedlings. Journal of Applied Phycology, 33(6), 3817–3829. https://doi.org/10.1007/S10811-021-02599-6
Traon, D., Amat, L., Zotz, F., & du Jardin, P. (2014). A legal framework for plant biostimulants and agronomic fertiliser additives in the EU report for the European Commission Enterprise & Industry Directorate-General. https://op.europa.eu/en/publication-detail/-/publication/dbeffd43-98a5-4e39-a930-7dfa21816f8c
Wang, M., Chen, S., Zhou, W., Yuan, W., & Wang, D. (2020). Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Research, 46, 101794. https://doi.org/10.1016/j.algal.2020.101794
Zuccaro, G., Yousuf, A., Pollio, A., & Steyer, J. (2020). Microalgae cultivation systems. In Yousuf, A. (Ed). Microalgae Cultivation for Biofuels Production (pp. 11–29). Academic Press. https://doi.org/10.1016/B978-0-12-817536-1.00002-3
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Actualidades Biológicas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores autorizan de forma exclusiva, a la revista Actualidades Biológicas a editar y publicar el manuscrito sometido en caso de ser recomendada y aceptada su publicación, sin que esto represente costo alguno para la Revista o para la Universidad de Antioquia.
Todas las ideas y opiniones contenidas en los artículos son de entera responsabilidad de los autores. El contenido total de los números o suplementos de la revista, está protegido bajo Licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, por lo que no pueden ser empleados para usos comerciales, pero sí para fines educativos. Sin embargo, por favor, mencionar como fuente a la revista Actualidades Biológicas y enviar una copia de la publicación en que fue reproducido el contenido.