Una mirada a las proteínas C3 y C5 en el Covid-19

Autores/as

DOI:

https://doi.org/10.17533/udea.acbi.v43n115a05

Palabras clave:

C3, C5, Complemento, Inhibición, SARS-CoV-2

Resumen

La emergencia causada por el nuevo virus SARS-CoV-2, causante de la enfermedad Covid-19, ha desencadenado una pandemia a nivel global. Uno de los factores más característicos de la infección por el virus SARS-CoV-2, es la activación desregulada del sistema del complemento, especialmente por parte las proteínas C3 y C5. Estas proteínas desencadenan reacciones de iniciación y de mantenimiento de actividades biológicas inadecuadas, además de respuestas inmunitarias descontroladas por parte de las células inmunes, en especial los neutrófilos. Generan diversas patologías como: accidente cerebrovascular agudo, ataque al corazón, coagulopatías, falla multiorgánica, inflamación, inmunotrombinosis, insuficiencia cardíaca, lesión renal aguda, lesiones agudas en el área pulmonar, microangiopatía trombótica, neumonía, y respuestas inmunes disfuncionales. Debido al rol crucial que presentan las proteínas C3 y C5 en la infección por el virus SARS-COV-2, nuevos tratamientos de inhibición del sistema del complemento han emergido como una posible primera línea de defensa contra los peores síntomas desarrollados durante la enfermedad Covid-19. En este artículo se revisará de manera general, el rol de las proteínas C3 y C5 y los tratamientos dirigidos a la inhibición de estas mismas proteínas durante la infección por SARS-CoV-2.

|Resumen
= 1592 veces | PDF (ENGLISH)
= 329 veces| | XML
= 8 veces| | HTML (ENGLISH)
= 10 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Henry David Mosquera-Daza, La Salle University

Universidad de La Salle, Department of Basic Sciences, Bogotá, Colombia.

Citas

Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, Genetics and Evolution, 83, Article 104327. https://doi.org/10.1016/j.meegid.2020.104327

Ajona, D., Ortiz-Espinosa, S., & Pio, R. (2019). Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Seminars in Cell and Developmental Biology, 85, 153–163. https://doi.org/10.1016/j.semcdb.2017.11.023

Allegra, A., Di Gioacchino, M., Tonacci, A., Musolino, C., & Gangemi, S. (2020). Immunopathology of SARS-CoV-2 infection: Immune cells and mediators, prognostic factors, and immune-therapeutic implications. International Journal of Molecular Sciences, 21(13), 1–19. https://doi.org/10.3390/ijms21134782

Bardoel, B. W., Kenny, E. F., Sollberger, G., & Zychlinsky, A. (2014). The balancing act of neutrophils. Cell Host and Microbe, 15(5), 526–536. https://doi.org/10.1016/j.chom.2014.04.011

Campbell, C. M., & Kahwash, R. (2020). Will Complement inhibition be the new target in treating COVID-19-related systemic thrombosis? Circulation, 141(22), 1739–1741. https://doi.org/10.1161/CIRCULATIONAHA.120.047419

Carpanini, S. M., Torvell, M., & Morgan, B. P. (2019). Therapeutic inhibition of the complement system in diseases of the central nervous system. Frontiers in Immunology, 10, Article 362. https://doi.org/10.3389/fimmu.2019.00362

Carvelli, J., Demaria, O., Vély, F., Batista, L., Chouaki Benmansour, N., Fares, J., Carpentier, S., Thibult, M. L., Morel, A., Remark, R., André, P., Represa, A., Piperoglou, C., Assante Miranda, L., Baron, W., Belaid, N., Caillet, C., Caraguel, F., Carrette, B., … Vivier, E. (2020). Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature, 588(7836), 146–150. https://doi.org/10.1038/s41586-020-2600-6

Chauhan, A. J., Wiffen, L. J., & Brown, T. P. (2020). COVID-19: A collision of complement, coagulation and inflammatory pathways. Journal of Thrombosis and Haemostasis, 18(9), 2110–2117. https://doi.org/10.1111/jth.14981

Chen, X. H., Ruan, C. C., Ge, Q., Ma, Y., Xu, J. Z., Zhang, Z. B., Lin, J. R., Chen, D. R., Zhu, D. L., & Gao, P. J. (2018). Deficiency of complement C3a and C5a receptors prevents Angiotensin II-induced hypertension via regulatory T cells. Circulation Research, 122(7), 970–983. https://doi.org/10.1161/CIRCRESAHA.117.312153

Chighizola, C. B., Lonati, P. A., Trespidi, L., Meroni, P. L., & Tedesco, F. (2020). The complement system in the pathophysiology of pregnancy and in systemic autoimmune rheumatic diseases during pregnancy. Frontiers in Immunology, 11, Article 2084. 2084. https://doi.org/10.3389/fimmu.2020.02084

Connors, J. M., & Levy, J. H. (2020). COVID-19 and its implications for thrombosis and anticoagulation. Blood, 135(23), 2033–2040. American Society of Hematology. https://doi.org/10.1182/BLOOD.2020006000

Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., & Kritas, S. K. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of biological regulators and homeostatic agents, 34(2), 327–331. https://doi.org/10.23812/CONTI-E

Conway, E. M., & Pryzdial, E. L. G. (2020). Is the COVID-19 thrombotic catastrophe complement-connected? Journal of Thrombosis and Haemostasis, 18(11), 2812–2822. https://doi.org/10.1111/jth.15050

Devaux, C. A., Rolain, J. M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection, 53(3), 425–435. https://doi.org/10.1016/j.jmii.2020.04.015

Didangelos, A. (2020). COVID-19 Hyperinflammation: What about Neutrophils? MSphere, 5(3), e00367-20. https://doi.org/10.1128/msphere.00367-20

Fanelli, V., Fiorentino, M., Cantaluppi, V., Gesualdo, L., Stallone, G., Ronco, C., & Castellano, G. (2020). Acute kidney injury in SARS-CoV-2 infected patients. Critical Care, 24(1), 155. https://doi.org/10.1186/s13054-020-02872-z

Fletcher-Sandersjöö, A., & Bellander, B. M. (2020). Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thrombosis Research, 194, 36–41. https://doi.org/10.1016/j.thromres.2020.06.027

Floch, A., Morel, A., Zanchetta-Balint, F., Cordonnier-Jourdin, C., Allali, S., Grall, M., Ithier, G., Carpentier, B., Pakdaman, S., Merle, J. C., Goulabchand, R., Khalifeh, T., Berceanu, A., Helmer, C., Chantalat-Auger, C., Frémeaux-Bacchi, V., Michel, M., de Montalembert, M., Mekontso-Dessap, A., Pirenne, F., Habibi, A., & Bartolucci, P. (2020). Anti-C5 antibody treatment for delayed hemolytic transfusion reactions in sickle cell disease. Haematologica, 105(11), 2694–2697. https://doi.org/10.3324/haematol.2020.253856

Fu, Y., Cheng, Y., & Wu, Y. (2020). Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virologica Sinica, 35(3), 266–271. https://doi.org/10.1007/s12250-020-00207-4

Gao, T., Hu, M., Zhang, X., Li, H., Zhu, L., Liu, H., Dong, Q., Zhang, Z., Wang, Z., Hu, Y., Fu, Y., Jin, Y., Li, K., Zhao, S., Xiao, Y., Luo, S., Li, L., Zhao, L., Liu, J. Zhao, H., Liu, Y., Yang, W., Peng, J., Chen, X., Li, P., Liu, Y., Xie, Y., Song, J., Zhang, L., Ma, Q., Bian, X., Chen, W., Liu, X., Mao, Q., & Cao, C. (2020). Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. MedRxiv, 2020.03.29.20041962. https://doi.org/10.1101/2020.03.29.20041962

Giudice, V., Pagliano, P., Vatrella, A., Masullo, A., Poto, S., Polverino, B. M., Gammaldi, R., Maglio, A., Sellitto, C., Vitale, C., Serio, B., Cuffa, B., Borrelli, A., Vecchione, C., Filippelli, A., & Selleri, C. (2020). Combination of Ruxolitinib and Eculizumab for Treatment of Severe SARS-CoV-2-Related Acute Respiratory Distress Syndrome: A Controlled Study. Frontiers in Pharmacology, 11, Article 857. https://doi.org/10.3389/fphar.2020.00857

Gralinski, L. E., Sheahan, T. P., Morrison, T. E., Menachery, V. D., Jensen, K., Leist, S. R., Whitmore, A., Heise, M. T., & Baric, R. S. (2018). Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio, 9(5), e01753-18. https://doi.org/10.1128/mBio.01753-18

Haapasalo, K., & Meri, S. (2019). Regulation of the Complement System by Pentraxins. In Frontiers in immunology, 10, Article 1750. https://doi.org/10.3389/fimmu.2019.01750

Hirano, T., & Murakami, M. (2020). COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity, 52(5), 731–733. https://doi.org/10.1016/j.immuni.2020.04.003

Java, A., Apicelli, A. J., Kathryn Liszewski, M., Coler-Reilly, A., Atkinson, J. P., Kim, A. H. J., & Kulkarni, H. S. (2020). The complement system in COVID-19: Friend and foe? JCI Insight, 5(15). https://doi.org/10.1172/jci.insight.140711

Jiang, S., Du, L., & Shi, Z. (2020). An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerging Microbes and Infections, 9(1), 275–277. https://doi.org/10.1080/22221751.2020.1723441

Jodele, S., & Köhl, J. (2021). Tackling COVID-19 infection through complement-targeted immunotherapy. British Journal of Pharmacology, 178(14), 2832–2848. https://doi.org/10.1111/bph.15187

Kwak, J. W., Laskowski, J., Li, H. Y., McSharry, M. V., Sippel, T. R., Bullock, B. L., Johnson, A. M., Poczobutt, J. M., Neuwelt, A. J., Malkoski, S. P., Weiser-Evans, M. C., Lambris, J. D., Clambey, E. T., Thurman, J. M., & Nemenoff, R. A. (2018). Complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression. Cancer Research, 78(1), 143–156. https://doi.org/10.1158/0008-5472.CAN-17-0240

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5

Laumonnier, Y., Karsten, C. M., Köhl, G., & Köhl, J. (2020). Characterization of anaphylatoxin receptor expression and C3a/C5a functions in anaphylatoxin receptor reporter mice. Current Protocols in Immunology, 130(1), e100. https://doi.org/10.1002/cpim.100

Laurence, J., Mulvey, J. J., Seshadri, M., Racanelli, A., Harp, J., Schenck, E. J., Zappetti, D., Horn, E. M., & Magro, C. M. (2020). Anti-complement C5 therapy with eculizumab in three cases of critical COVID-19. Clinical Immunology, 219, Article 108555. https://doi.org/10.1016/j.clim.2020.108555

Lescure, F. X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P. H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., Enouf, V., Houhou-Fidouh, N., Valette, M., Mailles, A., Lucet, J. C., Mentre, F., Duval, X., Descamps, D., Malvy, D., … Yazdanpanah, Y. (2020). Clinical and virological data of the first cases of COVID-19 in Europe: a case series. The Lancet Infectious Diseases, 20(6), 697–706. https://doi.org/10.1016/S1473-3099(20)30200-0

Magro, C., Mulvey, J. J., Berlin, D., Nuovo, G., Salvatore, S., Harp, J., Baxter-Stoltzfus, A., & Laurence, J. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Translational Research, 220, 1–13. https://doi.org/10.1016/j.trsl.2020.04.007

Makishima, K., Obara, N., Ishitsuka, K., Sukegawa, S., Suma, S., Kiyoki, Y., Baba, N., Sakamoto, T., Kato, T., Kusakabe, M., Nishikii, H., Kurita, N., Yokoyama, Y., Sakata-Yanagimoto, M., Hasegawa, Y., & Chiba, S. (2019). High efficacy of eculizumab treatment for fulminant hemolytic anemia in primary cold agglutinin disease. Annals of Hematology, 98(4), 1031–1032. https://doi.org/10.1007/s00277-018-3521-4

Mastaglio, S., Ruggeri, A., Risitano, A. M., Angelillo, P., Yancopoulou, D., Mastellos, D. C., Huber-Lang, M., Piemontese, S., Assanelli, A., Garlanda, C., Lambris, J. D., & Ciceri, F. (2020). The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clinical Immunology, 215, Article 108450. https://doi.org/10.1016/j.clim.2020.108450

Mastellos, D. C., Pires da Silva, B. G. P., Fonseca, B. A. L., Fonseca, N. P., Auxiliadora-Martins, M., Mastaglio, S., Ruggeri, A., Sironi, M., Radermacher, P., Chrysanthopoulou, A., Skendros, P., Ritis, K., Manfra, I., Iacobelli, S., Huber-Lang, M., Nilsson, B., Yancopoulou, D., Connolly, E. S., Garlanda, C., Ciceri, F., Risitano, A. M., Calado, R. T., & Lambris, J. D. (2020). Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clinical Immunology, 220, 108598. https://doi.org/10.1016/j.clim.2020.108598

Meng, F., Sun, Y., Liu, X., Wang, J., Xu, T., & Wang, R. (2012). Analysis of c3 suggests three periods of positive selection events and different evolutionary patterns between fish and mammals. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0037489

Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015a). Complement system part I - molecular mechanisms of activation and regulation. In Frontiers in Immunology, 6, Article 262. https://doi.org/10.3389/fimmu.2015.00262

Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015b). Complement system part II: Role in immunity. In Frontiers in Immunology, 6, Article 257. https://doi.org/10.3389/fimmu.2015.00257

Middleton, E. A., He, X. Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., Mostyka, M., Baxter-Stoltzfus, A., Borczuk, A. C., Loda, M., Cody, M. J., Manne, B. K., Portier, I., Harris, E. S., Petrey, A. C., Beswick, E. J., Caulin, A. F., Iovino, A., Abegglen, L. M., Weyrich, A. S., Rondina, M. T., Egeblad, M., Schiffman, J. D., & Yost, C. C. (2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 136(10), 1169–1179. https://doi.org/10.1182/blood.2020007008

Moreno-Navarrete, J. M., & Fernández-Real, J. M. (2019). The complement system is dysfunctional in metabolic disease: Evidences in plasma and adipose tissue from obese and insulin resistant subjects. Seminars in Cell and Developmental Biology, 85, 164–172. https://doi.org/10.1016/j.semcdb.2017.10.025

Naicker, S., Yang, C. W., Hwang, S. J., Liu, B. C., Chen, J. H., & Jha, V. (2020). The Novel Coronavirus 2019 epidemic and kidneys. Kidney International, 97(5), 824–828. https://doi.org/10.1016/j.kint.2020.03.001

Noris, M., Benigni, A., & Remuzzi, G. (2020). The case of complement activation in COVID-19 multiorgan impact. Kidney International, 98(2), 314–322. https://doi.org/10.1016/j.kint.2020.05.013

Paredes, R. M., Reyna, S., Vernon, P., Tadaki, D. K., Dallelucca, J. J., & Sheppard, F. (2018). Generation of complement molecular complex C5b-9 (C5b-9) in response to poly-traumatic hemorrhagic shock and evaluation of C5 cleavage inhibitors in non-human primates. International Immunopharmacology, 54, 221–225. https://doi.org/10.1016/j.intimp.2017.10.033

Polycarpou, A., Howard, M., Farrar, C. A., Greenlaw, R., Fanelli, G., Wallis, R., Klavinskis, L. S., & Sacks, S. (2020). Rationale for targeting complement in COVID‐19. EMBO Molecular Medicine, 12(8). https://doi.org/10.15252/emmm.202012642

Ramlall, V., Thangaraj, P. M., Meydan, C., Foox, J., Butler, D., Kim, J., May, B., De Freitas, J. K., Glicksberg, B. S., Mason, C. E., Tatonetti, N. P., & Shapira, S. D. (2020). Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nature Medicine, 26(10), 1609–1615. https://doi.org/10.1038/s41591-020-1021-2

Ricklin, D., Reis, E. S., & Lambris, J. D. (2016). Complement in disease: a defence system turning offensive. Nature Reviews Nephrology, 12(7), 383–401. https://doi.org/10.1038/nrneph.2016.70

Risitano, A. M., Mastellos, D. C., Huber-Lang, M., Yancopoulou, D., Garlanda, C., Ciceri, F., & Lambris, J. D. (2020). Complement as a target in COVID-19? Nature Reviews Immunology, 20(6), 343–344. https://doi.org/10.1038/s41577-020-0320-7

Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, Article 102433. https://doi.org/10.1016/j.jaut.2020.102433

Sadik, C. D., Miyabe, Y., Sezin, T., & Luster, A. D. (2018). The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Seminars in Immunology, 37, 21–29. https://doi.org/10.1016/j.smim.2018.03.002

Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and Tissue Research, 343(1), 227–235. https://doi.org/10.1007/s00441-010-1034-0

Shivshankar, P., Li, Y. D., Mueller-Ortiz, S. L., & Wetsel, R. A. (2020). In response to complement anaphylatoxin peptides C3a and C5a, human vascular endothelial cells migrate and mediate the activation of B-cells and polarization of T-cells. FASEB Journal, 34(6), 7540–7560. https://doi.org/10.1096/fj.201902397R

Skendros, P., Mitsios, A., Chrysanthopoulou, A., Mastellos, D. C., Metallidis, S., Rafailidis, P., Ntinopoulou, M., Sertaridou, E., Tsironidou, V., Tsigalou, C., Tektonidou, M., Konstantinidis, T., Papagoras, C., Mitroulis, I., Germanidis, G., Lambris, J. D., & Ritis, K. (2020). Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. Journal of Clinical Investigation, 130(11), 6151–6157. https://doi.org/10.1172/JCI141374

Stahel, P. F., & Barnum, S. R. (2020). Complement Inhibition in Coronavirus Disease (COVID)-19: A Neglected Therapeutic Option. Frontiers in Immunology, 11, Article 1661. https://doi.org/10.3389/fimmu.2020.01661

Stern, R. M., & Connell, N. T. (2019). Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. Therapeutic Advances in Hematology, 10, 204062071987472. https://doi.org/10.1177/2040620719874728

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8

van den Bos, R. M., Pearce, N. M., Granneman, J., Brondijk, T. H. C., & Gros, P. (2019). Insights into enhanced complement activation by structures of properdin and its complex with the C-terminal domain of C3b. Frontiers in Immunology, 10, Article 2097. https://doi.org/10.3389/fimmu.2019.02097

Vlaar, A. P. J., de Bruin, S., Busch, M., Timmermans, S. A. M. E. G., van Zeggeren, I. E., Koning, R., ter Horst, L., Bulle, E. B., van Baarle, F. E. H. P., van de Poll, M. C. G., Kemper, E. M., van der Horst, I. C. C., Schultz, M. J., Horn, J., Paulus, F., Bos, L. D., Wiersinga, W. J., Witzenrath, M., Rueckinger, S., Pilz, K., Brouwer, M. C., Guo, R-F., Heunks, L., van Paassen, P., Riedemann, N. C., van de Beek, D. (2020). Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. The Lancet Rheumatology, 2(12), e764–e773. https://doi.org/10.1016/S2665-9913(20)30341-6

Yeboah, K., Edgell, R., Conway, J., & Alshekhlee, A. (2021). Interventional stroke management in a patient with COVID-19. Neurology: Clinical Practice, 11(2), e199–e201. https://doi.org/10.1212/cpj.0000000000000884

Zilberman-Itskovich, S., Abu-Hamad, R., Stark, M., & Efrati, S. (2019). Effect of anti-C5 antibody on recuperation from ischemia/reperfusion-induced acute kidney injury. Renal Failure, 41(1), 967–975. https://doi.org/10.1080/0886022X.2019.1677248

Publicado

2021-08-31

Cómo citar

Mosquera-Daza, H. D. (2021). Una mirada a las proteínas C3 y C5 en el Covid-19. Actualidades Biológicas, 43(115), 1–9. https://doi.org/10.17533/udea.acbi.v43n115a05

Número

Sección

Artículos de revisión