Uma olhada nas proteínas C3 e C5 em Covid-19
DOI:
https://doi.org/10.17533/udea.acbi.v43n115a05Palavras-chave:
C3, C5, Complemento, Inhibición, SARS-CoV-2Resumo
A emergência causada pelo novo vírus SARS-CoV-2, que causa a doença Covid-19, desencadeou uma pandemia global. Um dos fatores mais característicos da infecção pelo vírus SARS-CoV-2 é a ativação desregulada do sistema complemento, especialmente pelas proteínas C3 e C5. Essas proteínas desencadeiam reações de iniciação, como manutenção de atividades biológicas inadequadas, além de respostas imunes descontroladas por células imunes, especialmente neutrófilos. Eles geram várias patologias, como acidente vascular cerebral agudo, ataque cardíaco, coagulopatias, insuficiência de múltiplos órgãos, inflamação, imunotrombinose, insuficiência cardíaca, lesão renal aguda, lesões agudas na área pulmonar, microangiopatia trombótica, pneumonia e respostas imunes disfuncionais. Devido ao papel crucial desempenhado pelas proteínas C3 e C5 na infecção pelo vírus SARS-COV-2, novos tratamentos de inibição do sistema complemento surgiram como uma possível primeira linha de defesa contra os piores sintomas desenvolvidos durante a doença de Covid-19. Este artigo fará uma revisão geral do papel das proteínas C3 e C5 e dos tratamentos direcionados à inibição dessas mesmas proteínas durante a infecção por SARS-CoV-2.
Downloads
Referências
Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, Genetics and Evolution, 83, Article 104327. https://doi.org/10.1016/j.meegid.2020.104327
Ajona, D., Ortiz-Espinosa, S., & Pio, R. (2019). Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Seminars in Cell and Developmental Biology, 85, 153–163. https://doi.org/10.1016/j.semcdb.2017.11.023
Allegra, A., Di Gioacchino, M., Tonacci, A., Musolino, C., & Gangemi, S. (2020). Immunopathology of SARS-CoV-2 infection: Immune cells and mediators, prognostic factors, and immune-therapeutic implications. International Journal of Molecular Sciences, 21(13), 1–19. https://doi.org/10.3390/ijms21134782
Bardoel, B. W., Kenny, E. F., Sollberger, G., & Zychlinsky, A. (2014). The balancing act of neutrophils. Cell Host and Microbe, 15(5), 526–536. https://doi.org/10.1016/j.chom.2014.04.011
Campbell, C. M., & Kahwash, R. (2020). Will Complement inhibition be the new target in treating COVID-19-related systemic thrombosis? Circulation, 141(22), 1739–1741. https://doi.org/10.1161/CIRCULATIONAHA.120.047419
Carpanini, S. M., Torvell, M., & Morgan, B. P. (2019). Therapeutic inhibition of the complement system in diseases of the central nervous system. Frontiers in Immunology, 10, Article 362. https://doi.org/10.3389/fimmu.2019.00362
Carvelli, J., Demaria, O., Vély, F., Batista, L., Chouaki Benmansour, N., Fares, J., Carpentier, S., Thibult, M. L., Morel, A., Remark, R., André, P., Represa, A., Piperoglou, C., Assante Miranda, L., Baron, W., Belaid, N., Caillet, C., Caraguel, F., Carrette, B., … Vivier, E. (2020). Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature, 588(7836), 146–150. https://doi.org/10.1038/s41586-020-2600-6
Chauhan, A. J., Wiffen, L. J., & Brown, T. P. (2020). COVID-19: A collision of complement, coagulation and inflammatory pathways. Journal of Thrombosis and Haemostasis, 18(9), 2110–2117. https://doi.org/10.1111/jth.14981
Chen, X. H., Ruan, C. C., Ge, Q., Ma, Y., Xu, J. Z., Zhang, Z. B., Lin, J. R., Chen, D. R., Zhu, D. L., & Gao, P. J. (2018). Deficiency of complement C3a and C5a receptors prevents Angiotensin II-induced hypertension via regulatory T cells. Circulation Research, 122(7), 970–983. https://doi.org/10.1161/CIRCRESAHA.117.312153
Chighizola, C. B., Lonati, P. A., Trespidi, L., Meroni, P. L., & Tedesco, F. (2020). The complement system in the pathophysiology of pregnancy and in systemic autoimmune rheumatic diseases during pregnancy. Frontiers in Immunology, 11, Article 2084. 2084. https://doi.org/10.3389/fimmu.2020.02084
Connors, J. M., & Levy, J. H. (2020). COVID-19 and its implications for thrombosis and anticoagulation. Blood, 135(23), 2033–2040. American Society of Hematology. https://doi.org/10.1182/BLOOD.2020006000
Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., & Kritas, S. K. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of biological regulators and homeostatic agents, 34(2), 327–331. https://doi.org/10.23812/CONTI-E
Conway, E. M., & Pryzdial, E. L. G. (2020). Is the COVID-19 thrombotic catastrophe complement-connected? Journal of Thrombosis and Haemostasis, 18(11), 2812–2822. https://doi.org/10.1111/jth.15050
Devaux, C. A., Rolain, J. M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection, 53(3), 425–435. https://doi.org/10.1016/j.jmii.2020.04.015
Didangelos, A. (2020). COVID-19 Hyperinflammation: What about Neutrophils? MSphere, 5(3), e00367-20. https://doi.org/10.1128/msphere.00367-20
Fanelli, V., Fiorentino, M., Cantaluppi, V., Gesualdo, L., Stallone, G., Ronco, C., & Castellano, G. (2020). Acute kidney injury in SARS-CoV-2 infected patients. Critical Care, 24(1), 155. https://doi.org/10.1186/s13054-020-02872-z
Fletcher-Sandersjöö, A., & Bellander, B. M. (2020). Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thrombosis Research, 194, 36–41. https://doi.org/10.1016/j.thromres.2020.06.027
Floch, A., Morel, A., Zanchetta-Balint, F., Cordonnier-Jourdin, C., Allali, S., Grall, M., Ithier, G., Carpentier, B., Pakdaman, S., Merle, J. C., Goulabchand, R., Khalifeh, T., Berceanu, A., Helmer, C., Chantalat-Auger, C., Frémeaux-Bacchi, V., Michel, M., de Montalembert, M., Mekontso-Dessap, A., Pirenne, F., Habibi, A., & Bartolucci, P. (2020). Anti-C5 antibody treatment for delayed hemolytic transfusion reactions in sickle cell disease. Haematologica, 105(11), 2694–2697. https://doi.org/10.3324/haematol.2020.253856
Fu, Y., Cheng, Y., & Wu, Y. (2020). Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virologica Sinica, 35(3), 266–271. https://doi.org/10.1007/s12250-020-00207-4
Gao, T., Hu, M., Zhang, X., Li, H., Zhu, L., Liu, H., Dong, Q., Zhang, Z., Wang, Z., Hu, Y., Fu, Y., Jin, Y., Li, K., Zhao, S., Xiao, Y., Luo, S., Li, L., Zhao, L., Liu, J. Zhao, H., Liu, Y., Yang, W., Peng, J., Chen, X., Li, P., Liu, Y., Xie, Y., Song, J., Zhang, L., Ma, Q., Bian, X., Chen, W., Liu, X., Mao, Q., & Cao, C. (2020). Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. MedRxiv, 2020.03.29.20041962. https://doi.org/10.1101/2020.03.29.20041962
Giudice, V., Pagliano, P., Vatrella, A., Masullo, A., Poto, S., Polverino, B. M., Gammaldi, R., Maglio, A., Sellitto, C., Vitale, C., Serio, B., Cuffa, B., Borrelli, A., Vecchione, C., Filippelli, A., & Selleri, C. (2020). Combination of Ruxolitinib and Eculizumab for Treatment of Severe SARS-CoV-2-Related Acute Respiratory Distress Syndrome: A Controlled Study. Frontiers in Pharmacology, 11, Article 857. https://doi.org/10.3389/fphar.2020.00857
Gralinski, L. E., Sheahan, T. P., Morrison, T. E., Menachery, V. D., Jensen, K., Leist, S. R., Whitmore, A., Heise, M. T., & Baric, R. S. (2018). Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio, 9(5), e01753-18. https://doi.org/10.1128/mBio.01753-18
Haapasalo, K., & Meri, S. (2019). Regulation of the Complement System by Pentraxins. In Frontiers in immunology, 10, Article 1750. https://doi.org/10.3389/fimmu.2019.01750
Hirano, T., & Murakami, M. (2020). COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity, 52(5), 731–733. https://doi.org/10.1016/j.immuni.2020.04.003
Java, A., Apicelli, A. J., Kathryn Liszewski, M., Coler-Reilly, A., Atkinson, J. P., Kim, A. H. J., & Kulkarni, H. S. (2020). The complement system in COVID-19: Friend and foe? JCI Insight, 5(15). https://doi.org/10.1172/jci.insight.140711
Jiang, S., Du, L., & Shi, Z. (2020). An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerging Microbes and Infections, 9(1), 275–277. https://doi.org/10.1080/22221751.2020.1723441
Jodele, S., & Köhl, J. (2021). Tackling COVID-19 infection through complement-targeted immunotherapy. British Journal of Pharmacology, 178(14), 2832–2848. https://doi.org/10.1111/bph.15187
Kwak, J. W., Laskowski, J., Li, H. Y., McSharry, M. V., Sippel, T. R., Bullock, B. L., Johnson, A. M., Poczobutt, J. M., Neuwelt, A. J., Malkoski, S. P., Weiser-Evans, M. C., Lambris, J. D., Clambey, E. T., Thurman, J. M., & Nemenoff, R. A. (2018). Complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression. Cancer Research, 78(1), 143–156. https://doi.org/10.1158/0008-5472.CAN-17-0240
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
Laumonnier, Y., Karsten, C. M., Köhl, G., & Köhl, J. (2020). Characterization of anaphylatoxin receptor expression and C3a/C5a functions in anaphylatoxin receptor reporter mice. Current Protocols in Immunology, 130(1), e100. https://doi.org/10.1002/cpim.100
Laurence, J., Mulvey, J. J., Seshadri, M., Racanelli, A., Harp, J., Schenck, E. J., Zappetti, D., Horn, E. M., & Magro, C. M. (2020). Anti-complement C5 therapy with eculizumab in three cases of critical COVID-19. Clinical Immunology, 219, Article 108555. https://doi.org/10.1016/j.clim.2020.108555
Lescure, F. X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P. H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., Enouf, V., Houhou-Fidouh, N., Valette, M., Mailles, A., Lucet, J. C., Mentre, F., Duval, X., Descamps, D., Malvy, D., … Yazdanpanah, Y. (2020). Clinical and virological data of the first cases of COVID-19 in Europe: a case series. The Lancet Infectious Diseases, 20(6), 697–706. https://doi.org/10.1016/S1473-3099(20)30200-0
Magro, C., Mulvey, J. J., Berlin, D., Nuovo, G., Salvatore, S., Harp, J., Baxter-Stoltzfus, A., & Laurence, J. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Translational Research, 220, 1–13. https://doi.org/10.1016/j.trsl.2020.04.007
Makishima, K., Obara, N., Ishitsuka, K., Sukegawa, S., Suma, S., Kiyoki, Y., Baba, N., Sakamoto, T., Kato, T., Kusakabe, M., Nishikii, H., Kurita, N., Yokoyama, Y., Sakata-Yanagimoto, M., Hasegawa, Y., & Chiba, S. (2019). High efficacy of eculizumab treatment for fulminant hemolytic anemia in primary cold agglutinin disease. Annals of Hematology, 98(4), 1031–1032. https://doi.org/10.1007/s00277-018-3521-4
Mastaglio, S., Ruggeri, A., Risitano, A. M., Angelillo, P., Yancopoulou, D., Mastellos, D. C., Huber-Lang, M., Piemontese, S., Assanelli, A., Garlanda, C., Lambris, J. D., & Ciceri, F. (2020). The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clinical Immunology, 215, Article 108450. https://doi.org/10.1016/j.clim.2020.108450
Mastellos, D. C., Pires da Silva, B. G. P., Fonseca, B. A. L., Fonseca, N. P., Auxiliadora-Martins, M., Mastaglio, S., Ruggeri, A., Sironi, M., Radermacher, P., Chrysanthopoulou, A., Skendros, P., Ritis, K., Manfra, I., Iacobelli, S., Huber-Lang, M., Nilsson, B., Yancopoulou, D., Connolly, E. S., Garlanda, C., Ciceri, F., Risitano, A. M., Calado, R. T., & Lambris, J. D. (2020). Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clinical Immunology, 220, 108598. https://doi.org/10.1016/j.clim.2020.108598
Meng, F., Sun, Y., Liu, X., Wang, J., Xu, T., & Wang, R. (2012). Analysis of c3 suggests three periods of positive selection events and different evolutionary patterns between fish and mammals. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0037489
Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015a). Complement system part I - molecular mechanisms of activation and regulation. In Frontiers in Immunology, 6, Article 262. https://doi.org/10.3389/fimmu.2015.00262
Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015b). Complement system part II: Role in immunity. In Frontiers in Immunology, 6, Article 257. https://doi.org/10.3389/fimmu.2015.00257
Middleton, E. A., He, X. Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., Mostyka, M., Baxter-Stoltzfus, A., Borczuk, A. C., Loda, M., Cody, M. J., Manne, B. K., Portier, I., Harris, E. S., Petrey, A. C., Beswick, E. J., Caulin, A. F., Iovino, A., Abegglen, L. M., Weyrich, A. S., Rondina, M. T., Egeblad, M., Schiffman, J. D., & Yost, C. C. (2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 136(10), 1169–1179. https://doi.org/10.1182/blood.2020007008
Moreno-Navarrete, J. M., & Fernández-Real, J. M. (2019). The complement system is dysfunctional in metabolic disease: Evidences in plasma and adipose tissue from obese and insulin resistant subjects. Seminars in Cell and Developmental Biology, 85, 164–172. https://doi.org/10.1016/j.semcdb.2017.10.025
Naicker, S., Yang, C. W., Hwang, S. J., Liu, B. C., Chen, J. H., & Jha, V. (2020). The Novel Coronavirus 2019 epidemic and kidneys. Kidney International, 97(5), 824–828. https://doi.org/10.1016/j.kint.2020.03.001
Noris, M., Benigni, A., & Remuzzi, G. (2020). The case of complement activation in COVID-19 multiorgan impact. Kidney International, 98(2), 314–322. https://doi.org/10.1016/j.kint.2020.05.013
Paredes, R. M., Reyna, S., Vernon, P., Tadaki, D. K., Dallelucca, J. J., & Sheppard, F. (2018). Generation of complement molecular complex C5b-9 (C5b-9) in response to poly-traumatic hemorrhagic shock and evaluation of C5 cleavage inhibitors in non-human primates. International Immunopharmacology, 54, 221–225. https://doi.org/10.1016/j.intimp.2017.10.033
Polycarpou, A., Howard, M., Farrar, C. A., Greenlaw, R., Fanelli, G., Wallis, R., Klavinskis, L. S., & Sacks, S. (2020). Rationale for targeting complement in COVID‐19. EMBO Molecular Medicine, 12(8). https://doi.org/10.15252/emmm.202012642
Ramlall, V., Thangaraj, P. M., Meydan, C., Foox, J., Butler, D., Kim, J., May, B., De Freitas, J. K., Glicksberg, B. S., Mason, C. E., Tatonetti, N. P., & Shapira, S. D. (2020). Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nature Medicine, 26(10), 1609–1615. https://doi.org/10.1038/s41591-020-1021-2
Ricklin, D., Reis, E. S., & Lambris, J. D. (2016). Complement in disease: a defence system turning offensive. Nature Reviews Nephrology, 12(7), 383–401. https://doi.org/10.1038/nrneph.2016.70
Risitano, A. M., Mastellos, D. C., Huber-Lang, M., Yancopoulou, D., Garlanda, C., Ciceri, F., & Lambris, J. D. (2020). Complement as a target in COVID-19? Nature Reviews Immunology, 20(6), 343–344. https://doi.org/10.1038/s41577-020-0320-7
Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, Article 102433. https://doi.org/10.1016/j.jaut.2020.102433
Sadik, C. D., Miyabe, Y., Sezin, T., & Luster, A. D. (2018). The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Seminars in Immunology, 37, 21–29. https://doi.org/10.1016/j.smim.2018.03.002
Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and Tissue Research, 343(1), 227–235. https://doi.org/10.1007/s00441-010-1034-0
Shivshankar, P., Li, Y. D., Mueller-Ortiz, S. L., & Wetsel, R. A. (2020). In response to complement anaphylatoxin peptides C3a and C5a, human vascular endothelial cells migrate and mediate the activation of B-cells and polarization of T-cells. FASEB Journal, 34(6), 7540–7560. https://doi.org/10.1096/fj.201902397R
Skendros, P., Mitsios, A., Chrysanthopoulou, A., Mastellos, D. C., Metallidis, S., Rafailidis, P., Ntinopoulou, M., Sertaridou, E., Tsironidou, V., Tsigalou, C., Tektonidou, M., Konstantinidis, T., Papagoras, C., Mitroulis, I., Germanidis, G., Lambris, J. D., & Ritis, K. (2020). Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. Journal of Clinical Investigation, 130(11), 6151–6157. https://doi.org/10.1172/JCI141374
Stahel, P. F., & Barnum, S. R. (2020). Complement Inhibition in Coronavirus Disease (COVID)-19: A Neglected Therapeutic Option. Frontiers in Immunology, 11, Article 1661. https://doi.org/10.3389/fimmu.2020.01661
Stern, R. M., & Connell, N. T. (2019). Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. Therapeutic Advances in Hematology, 10, 204062071987472. https://doi.org/10.1177/2040620719874728
Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8
van den Bos, R. M., Pearce, N. M., Granneman, J., Brondijk, T. H. C., & Gros, P. (2019). Insights into enhanced complement activation by structures of properdin and its complex with the C-terminal domain of C3b. Frontiers in Immunology, 10, Article 2097. https://doi.org/10.3389/fimmu.2019.02097
Vlaar, A. P. J., de Bruin, S., Busch, M., Timmermans, S. A. M. E. G., van Zeggeren, I. E., Koning, R., ter Horst, L., Bulle, E. B., van Baarle, F. E. H. P., van de Poll, M. C. G., Kemper, E. M., van der Horst, I. C. C., Schultz, M. J., Horn, J., Paulus, F., Bos, L. D., Wiersinga, W. J., Witzenrath, M., Rueckinger, S., Pilz, K., Brouwer, M. C., Guo, R-F., Heunks, L., van Paassen, P., Riedemann, N. C., van de Beek, D. (2020). Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. The Lancet Rheumatology, 2(12), e764–e773. https://doi.org/10.1016/S2665-9913(20)30341-6
Yeboah, K., Edgell, R., Conway, J., & Alshekhlee, A. (2021). Interventional stroke management in a patient with COVID-19. Neurology: Clinical Practice, 11(2), e199–e201. https://doi.org/10.1212/cpj.0000000000000884
Zilberman-Itskovich, S., Abu-Hamad, R., Stark, M., & Efrati, S. (2019). Effect of anti-C5 antibody on recuperation from ischemia/reperfusion-induced acute kidney injury. Renal Failure, 41(1), 967–975. https://doi.org/10.1080/0886022X.2019.1677248
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Actualidades Biológicas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam exclusivamente a revista Actualidades Biológicas a editar e publicar o manuscrito submetido, desde que sua publicação seja recomendada e aceita, sem que isso represente qualquer custo para a Revista ou para a Universidade de Antioquia. Todas as ideias e opiniões contidas nos artigos são de responsabilidade exclusiva de Os autores. O conteúdo total das edições ou suplementos da revista é protegido pela Licença Internacional Creative Commons Atribuição-NãoComercial-Compartilhamento pela mesma Licença, portanto não podem ser utilizados para fins comerciais, mas sim para fins educacionais. Porém, cite a revista Actualidades Biológicas como fonte e envie uma cópia da publicação em que o conteúdo foi reproduzido.