Micropropagation and induction of storage organs in Curcuma longa L.
DOI:
https://doi.org/10.17533/udea.acbi.13808Keywords:
Curcuma longa, growth regulators, microrhizomes, photoperiod, turmericAbstract
One of the important characteristics of the plant species Curcuma longa L. is its chemical composition that makes it commercially attractive, because in addition to its pigments, which are used as food dyes or in medicines, it contains acetones and alcohols that give flavor to its rhizomes, making useful as a spice. Curcuma propagation is mainly conducted asexually, with low propagation rates; in addition, the rhizomes are susceptible to disease, making their storage difficult. Plant tissue culture offers, among other alternatives, microrhizome production, facilitating management in the greenhouse and field, transportation, exchange, and conservation. The goal of this project was to introduce and multiply C. longa plants in vitro, and induce microrhizome formation. After standardization of a disinfection protocol, the height and coefficient of multiplication of the established apexes were evaluated as response indeces to differing bencilaminopurine concentrations. Vitroplants of 10 cm were used to induce microrhizomes, and their formation, mean number, and morphological characteristics were evaluated. The results obtained suggested that MS medium with 2 mg/l bencilamonopurine (BAP) is adequate for producing a good quantity and quality of new plants. Conditions of total darkness and a sugar concentration above 60 g/l were key factors in the induction of microrhizomes.
Downloads
References
Adelberg J. 2010. Sucrose, water and nutrient use during stage II multiplication of two turmeric clones (Curcuma longa L.) in liquid medium. Scientia Horticulturae, 124: 262-267.
Adelberg J, Cousins M. 2007. Development of micro-and minirhizomes of turmeric, Curcuma longa L., in vitro. Acta Horticulture, 756: 103-108.
Agramonte D. 1999. Métodos biotecnológicos para la producción de semilla original de papa (Solanum tuberosum L.) [Tesis de doctorado]. [Santa Clara (Cuba)]: Instituto de Biotecnología de las Plantas, Universidad Central de las Villas. p. 96.
Bailey LH. 1949. Manual of cultivated plants most commonly grown in the continental United States and Canada. New York (U. S. A.): Macmillan Co. p. 1116.
Balachandran SM, Bhat SR, Chandel KPS. 1990. In vitro clonal multiplication of turmeric (Curcuma spp.) and ginger (Zingiber officinale Rosc.). Plant Cell Report, 8: 521-524.
Barrero M, Carreño R. 1999. Evaluación de los pigmentos de Curcuma cultivada en Venezuela. Agronomía Tropical, 49 (4): 491-504.
Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. 2004. Turmeric and curcumin: Biological actions and medicinal applications. Current Science, 87 (1): 44-53.
Cousins MM, Adelberg JW. 2008. Short-term and long-term time course studies of turmeric (Curcuma longa L.) microrhizome development in vitro. Plant Cell Tissue and Organ Culture, 93: 283-293.
Da Silva JA, Teixeira N, Duong T, Michio T, Seiichi F. 2003. The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Scientia Horticulturae, 97: 397-410.
Dekkers AJ, Rao AN, Goh CJ. 1991. In vitro storage of multiple shoot cultures of gingers at ambient temperatures of 24-29 8C. Scientia Horticulturae, 47: 157-167.
Filho ABC, de Souza RJ, Trevizan-Braz L, Tavares M. 2000. Cúrcuma: planta medicinal, condimentar e de outros usos potenciais. Revisión bibliográfica. Ciência Rural (Santa Maria), 30 (1): 171-175.
Hashemy T, Maki H, Yamada Y, Kanako T, Syono K. 2009. Effects oh light and cytokinin on in vitro micropropagation and microrhizome production in turmeric (Curcuma longa L.). Plant Biotechnology, 26: 237-242.
Hoang N, Trong D, Ho Kwon T, Sik M. 2005. Micropropagation of zedoary (Curcuma zedoaria Roscoe) - a valuable medicinal plant. Plant Cell Tissue and Organ Culture, 81:119-122.
John CK, Nadgauda RS, Mascarenhas AF. 1997. Turmeric. En: Varios, editores. Tissue culture of economic plants. New Delhi (India): Center for Science and Technology of the Non-Aligned and Other Developing Countries. p. 191-209.
Martínez L, Stecco VL, Tizzio R. 1991. Potenciales osmóticos y tuberización in vitro de secciones de brotes y esquejes de papa. Turrialba, 41 (4): 515-519.
Mau J, Lai E, Wang N, Chen C, Chang C, Chyau C. 2003. Composition and antioxidant activity of the essential oil from Curcuma zedoaria. Food Chemistry, 82 (4): 583-591.
Mrudul VS, John CK, Nadgauda RS. 2001. Factors affecting in vitro microrhizome production in turmeric. Plant Cell Tissue and Organ Culture, 64: 5-11.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plant, 15: 437-497.
Nadgauda RS, Mascarenhas AF, Hendre RR, Jagannathan V. 1978. Rapid multiplication of turmeric (Curcuma longa Linn.) plants by tissue culture. Indian Journal of Experimental Biology, 16: 120-122.
Nayak S. 2000. In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Grow Regulation, 32: 41-47.
Nayak S. 2002. High frequency in vitro production of mi- crorhizomes of Curcuma amada. Indian Journal of Experimental Biology, 40 (2): 230-232.
Naz S, Illyas S, Javed S, Ali A. 2009. In vitro clonal multiplication and acclamitization of different varieties of tuurmeric (Curcuma longa L.) Pakistan Journal of Botany, 41 (6): 2807-2816.
Salvi ND, George L, Eapen S. 2001. Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tissue and Organ Culture, 66: 113-119.
Scartezzini P, Speroni E. 2000. Review on some plants of Indian traditional medicine with antioxidant activity. Journal of Ethnopharmacology, 71 (1-2): 23-43.
Segura J. 2008. Citoquininas. En: Azcón J, Talón M, editores. Fundamentos de fisiología vegetal. Barcelona (España): Editorial McGraw-Hill Interamericana. p. 421-443.
Sharma TR and Singh BM. 1995. In vitro microrhizome production in Zingiber officinale Rosc. Plant Cell Reports, 15: 274-277.
Shirgurkar MV, Jhon CK, Nadgauda RS. 2001. Factors affecting in vitro microrhizome production in turmeric. Plant Cell Tissue and Organ Culture, 64 (1): 5-11.
Singh S, Kuanar A, Mohanty S, Subudhi E, Nayak S. 2011. Evaluation of phytomedicinal yield potential and molecular profiling of micropropagated and conventionally grown turmeric (Curcuma longa L.). Plant Cell Tissue and Organ Culture, Plant Cell Tissue and Organ Culture, 104 (2): 263-269.
Sunitibala H, Damayanti M, Sharma GJ. 2001. In vitro propagation and rizhome formation in Curcuma longa. Cytobios, 2001 (105): 71-82.
Tyagi RK, Yusuf A, Dua P, Agrawal A. 2004. In vitro plant regeneration and genotype conservation of eight wild species of Curcuma. Biologia Plantarum, 48 (1): 129-132.
Vázquez E, Torres S. 2001. Capítulo 10. Reproducción, multiplicación vegetativa. En: Vásquez E, Torres S. Fisiología vegetal. La Habana (Cuba): Ed. Félix Varela. p. 391-403.
Downloads
Published
How to Cite
Issue
Section
License
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.