Phylogeny of the extant canids (Carnivora: Canidae) by means of character congruence under parsimony

Authors

  • Jesualdo A. Fuentes-González Indiana University
  • Joao Muñoz-Durán Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.acbi.14244

Keywords:

Canidae, character congruence, parsimony, total evidence, trenchant heel

Abstract

Genealogical relationships among extant canids have been controversial. The most noticeable problems include the monophyly of both the wolf-like canids and the South American canids, as well as the phylogenetic position of Nyctereutes, Urocyon, Otocyon, Chrysocyon, Speothos and Lycaon. In this study we analyze the phylogenetic relationships of the 35 extant canid species using a character congruence approach under maximum parsimony. We analyzed morphological, molecular, cytogenetic, life history, ecological and behavioral data. Taxonomic congruence approaches were also implemented to evaluate the contribution and combinability of data partitions. Since partitioned analysis did not result in hard incongruences among partitions, we proceeded to a combined analysis of all data. The resulting topology suggests that Nyctereutes radiated early in the history of the Caninae, whereas the other taxa are grouped in three clades: fox-like canids, wolf-like canids, and South American canids. Monophyly of the genera Urocyon, Lycalopex, and Vulpes was corroborated. Results also indicated that the genus Canis is polyphyletic. The taxa Urocyon and Otocyon are sister taxa and are located at the base of the fox-like canids (Vulpini). Species of Vulpes are arranged in two clades according to biogeographical distribution. The first clade includes all Holartic species, the second is shared by Afrotropical and Indo-Malaysian species. The evolution of South American canids presents a hierarchical radiation structure, with Lycalopex at the end of the branch. The taxon Speothos is not included within the South American canid clade. It is in a clade together with the other two genera that have a trenchant heel (Lycaon and Cuon), suggesting that the hypercarnivory adaptation evolved only once in the history of the Caninae.

|Abstract
= 2119 veces | PDF (ESPAÑOL (ESPAÑA))
= 1280 veces|

Downloads

Download data is not yet available.

Author Biographies

Jesualdo A. Fuentes-González, Indiana University

Department of Biology, Indiana University, Bloomington

Joao Muñoz-Durán, Universidad Nacional de Colombia

Department of Biology, National University of Colombia, Bogotá Headquarters. Bogotá, D.C., Colombia.

References

Bardeleben C, Moore RL, Wayne RK. 2005. A molecular phylogeny of the Canidae based on six nuclear loci. Molecular phylogenetics and evolution, 37 (3): 815-831.

Bekoff M, Daniels TJ, Gittleman JL. 1984. Life history patterns and the comparative social ecology of carnivores. Annual Review of Ecology and Systematics, 15: 191-232.

Bininda-Emonds ORP, Gittleman JL, Purvis A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Review of the

Cambridge Philosophical Society, 74: 143-175. Borsch T, Hilu KW, Quandt D, Wile V, Nenhuis C, Barthlott W. 2003. Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. Journal of Evolutionary Biology, 16: 558-576.

Calendini F, Martin J-F [Internet]. 2005. PaupUP: A free graphical frontend for Paup*Dos software. Fecha de acceso: 11 octubre 2008. Disponible en: <http://www.agromontpellier.fr/sppe/Recherche/JFM/PaupUp/

main.htm>.

Caumul R, Polly PD. 2005. Phylogenetic and environmental components of morphological variation: skull, mandible and molar shape in marmots (Marmota, Rodentia). Evolution, 59: 2460-2472.

Clutton-Brock J, Corbet GB, Hills M. 1976. A review of the family Canidae, with a classification by numerical methods. Bulletin of the British Museum (Natural History), Zoology, 29 (3): 119-199.

Courchamp F, Grenfell B, Clutton-Brock T. 1999. Population dynamics of obligate cooperators. Proceedings of the Royal Society B: Biological Sciences, 266: 557-563.

Eernisse DJ, Kluge AG. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution, 10 (6): 1170-1195.

Geffen E, Gompper ME, Gittleman JL, Luh HK, Macdonald DW, Wayne RK. 1996. Size, life-history traits, and social organization in the Canidae: a reevaluation. American Naturalist, 147 (1): 140-160.

Geffen E, Macdonald DW. 1992. Small size and monogamy: spatial organization of the Blanford’s fox, Vulpes cana. Animal Behaviour, 44: 1123-1130.

Geffen E, Mercure A, Girman DJ, Macdonald DW, Wayne RK. 1992. Phylogenetic relationships of the fox-like canids: mitochondrial DNA restriction fragment, site and cytochrome b sequence analyses. The Zoological Society of London, 228: 27-39.

Gese EM, Bekoff M. 2004. Coyote (Canis latrans). En: Sillero-Zubiri C, Hoffmann M, Macdonald DW, editores. Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Gland,

Switzerland y Cambridge (UK): IUCN/SSC Canid Specialist Group. p. 81-87.

Gittleman JL. 1986a. Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67 (1): 23-36.

Gittleman JL. 1986b. Carnivore life history patterns: allometric, phylogenetic, and ecological associations. American Naturalist, 127 (6): 744-771.

Gittleman JL. 1991. Carnivore olfactory bulb size: allometry phylogeny and ecology. Journal of Zoology, 225: 253-272

Kelly BT, Beyer A, Phillips K. 2004. Red wolf (Canis rufus). En: Sillero-Zubiri C, Hoffmann M, Macdonald DW, editores. Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Gland, Switzerland and Cambridge (UK): IUCN/SSC Canid Specialist Group. p. 87-92.

Larkin MA, Blackshields G, Brown NP, Cheena R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947-2948.

List R, Cypher BL. 2004. Kit fox (Vulpes macrotis). En: Sillero-Zubiri C, Hoffmann M, Macdonald DW, editores. Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Gland,

Switzerland and Cambridge (UK): IUCN/SSC Canid Specialist Group. p. 105-109.

Lyras GA, Van der Geer A. 2003. External brain anatomy in relation to the phylogeny of Caninae (Carnivora: Canidae). Zoological Journal of the Linnean Society, 138 (4): 505-522.

Maier R. 2001. Comportamiento animal: Un enfoque evolutivo y ecológico, Madrid: McGraw Hill Interamericana. p. 582.

Moehlman PD, Hofer H. 1997. Cooperative breeding, reproductive suppression, and body mass in canids. En: Solomon NG, French JA, editores. Cooperative breeding in mammals. Cambridge: Cambridge

University Press. p. 76-127.

Moehrenschlager A, Sovada M. 2004. Swift fox (Vulpes velox). En: Sillero-Zubiri C, Hoffmann M, Macdonald DW, editores. Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Gland, Switzerland and Cambridge (UK): IUCN/SSC Canid Specialist Group. p. 109-116.

Muñoz-Durán J. 2002. Correlates of speciation and extinction rates in the Carnivora. Evolutionary Ecology Research, 4: 963-991.

Muñoz-Durán J. 2010. Sociabilidad en carnívoros: Una paradoja evolutiva. En: Zerda E, editor. Bases biológicas del comportamiento animal y humano. Bogotá (Colombia): Universidad Nacional de

Colombia, Dirección Académica, Facultad de Ciencias. p. 307-325.

Muñoz-Durán J. 2011. Data set incongruence and insights from the fossil record: the canid phylogeny. Caldasia, 33 (2): 551-572.

Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12: 357-358.

Patterson C. 1982. Morphological characters and homology. En: Joysey KA, Friday AE, editores. Problems of phylogenetic reconstruction. London y New York: Academic Press. p. 21-74.

de Pinna MCC. 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics, 7: 367-394.

Polly PD. 2010. Tiptoeing through the tropics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. En: Goswami A, Friscia A, editores. Carnivoran evolution: New views on

phylogeny, form, and function. Cambridge: Cambridge University Press. p. 374-410.

Sillero-Zubiri C, Macdonald DW. 2004. Introduction. En: Sillero-Zubiri C, Hoffmann M, Macdonald DW, editores. Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Gland,

Switzerland and Cambridge (UK): IUCN/SSC Canid Specialist Group. p. 2-7.

Swofford DL. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Sunderland, Massachusetts: Sinauer Associates. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4:

Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596-1599.

Tedford RH, Taylor BE, Wang X. 1995. Phylogeny of the Caninae (Carnivora: Canidae): the living taxa. American Museum Novitates, 3146: 1-37.

Tedford RH, Wang X, Taylor BE. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 574: 1-215.

Van Valkenburgh B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology, 17 (4): 340-362.

Venkataraman AB, Johnsingh AJT. 2004. Dholes. En: Macdonald DW, Sillero-Zubiri C, editores. The biology and conservation of wild canids. Oxford: Oxford University Press. p. 323-335.

Wang X. 1993. Transformation from plantigrady to digitigrady: Functional morphology of locomotion in Hesperocyon (Canidae: Carnivora). American Museum Novitates, 3069: 1-23.

Wang X, Tedford RH. 2007. Evolutionary history of canids. En: Jensen P, editor. The behavioural biology of dogs. Oxford: CABI International. p. 3-20.

Wang X, Tedford RH, Taylor BE. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 243: 1-391.

Wang X, Tedford RH, Van Valkenburgh B, Wayne RK. 2004a. Ancestry: Evolutionary history, molecular systematics, and evolutionary ecology of Canidae. En: Macdonald DW, Sillero-Zubiri C, editores. The biology and conservation of wild canids. Oxford: Oxford University Press. p. 39-54.

Wang X, Tedford RH, Van Valkenburgh B, Wayne RK. 2004b. Phylogeny, classification, and evolutionary ecology of the Canidae. En: Sillero-Zubiri C, Hoffmann M, Macdonald DW, editores. Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Gland, Switzerland and Cambridge (UK): IUCN/SSC Canid Specialist Group. p. 8-20.

Wayne RK, Geffen E, Girman DJ, Koepfli KP, Lau LM, Marshall CR. 1997. Molecular systematics of the Canidae. Systematic Biology, 46 (4): 622-653.

Wayne RK, Nash WG, O’Brien SJ. 1987a. Chromosomal evolution of the Canidae: I. Species with high diploid numbers. Cytogenetics and Cell Genetics, 44: 123-133.

Wayne RK, Nash WG, O’Brien SJ. 1987b. Chromosomal evolution of the Canidae: II. Diveregence from the primitive carnivore karyotype. Cytogenetics and Cell Genetics, 44: 134-141.

Yu L, Li Q, Ryder OA, Zhang Y. 2004. Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Molecular phylogenetics and evolution, 32 (2): 480-494.

Zrzavỳ J, Řičánková V. 2004. Phylogeny of recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. Zoologica Scripta, 33 (4): 311-333.

Published

2017-10-18

How to Cite

Fuentes-González, J. A., & Muñoz-Durán, J. (2017). Phylogeny of the extant canids (Carnivora: Canidae) by means of character congruence under parsimony. Actualidades Biológicas, 34(96), 85–102. https://doi.org/10.17533/udea.acbi.14244

Issue

Section

Full articles