Antagonist activity of Trichoderma asperellum(Fungi: Ascomycota) at different temperatures

Authors

  • Harold A. Vargas-Hoyos Universidad de Antioquia
  • Ever A. Rueda-Lorza Corporación para Investigaciones Biológicas
  • Elizabeth Gilchrist-Ramelli Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.acbi.14245

Keywords:

in vitro antagonism, temperature, Colletotrichum spp., Rhizoctonia spp., Trichoderma spp.

Abstract

The genus Trichoderma (Fungi: Ascomycota: Sordariomycetes: Hypocreaceae) contains species with high antagonistic capacity. It has been determined that the temperature can be a limiting factor for growth of these species. Evaluation in vitro may suggest their field performance, allowing evidence of viable isolates for use in biological control. In this paper, 27 isolates of Trichoderma spp. were assayed using a dual culture against Rhizoctonia sp. (Fungi: Agaricomycetes) and Colletotrichum sp. (Fungi: Sordariomycetes). From those, 16 and 9 showed an inhibition ≥ 70% against Rhizoctonia sp. and Colletotrichum sp., respectively. The isolates T46, T84, T92, and T109 achieved an inhibition ≥ 75% for both phytopathogens. These isolates were submitted to different temperatures: 4, 10, 15, 20, 25, and 30 °C in order to evaluate their antagonism against Rhizoctonia sp. With the exception of 4 °C, for every temperature assayed the inhibition in growth of the phytopathogen was ≥ 75%. For 30 °C both antagonists inhibited the growth of Rhizoctonia sp.; T46 at 94% and T109 at 95%. Biological activity was shown for all the temperatures, confirming the antagonistic potential of this microorganism.

|Abstract
= 296 veces | PDF (ESPAÑOL (ESPAÑA))
= 163 veces|

Downloads

Download data is not yet available.

Author Biographies

Harold A. Vargas-Hoyos, Universidad de Antioquia

Institute of Biology, Universidad de Antioquia. Medellín (Antioquia), Colombia.

Ever A. Rueda-Lorza, Corporación para Investigaciones Biológicas

Corporación para Investigaciones Biológicas, Unidad de Fitosanidad y Control Biológico. Medellín (Antioquia), Colombia.

Elizabeth Gilchrist-Ramelli, Universidad Nacional de Colombia

Faculty of agricultural sciences, Universidad Nacional de Colombia (Sede Medellín). Medellín (Antioquia), Colombia

References

Antal Z, Manczinger L, Szakacs G, Tengerdy RP, Ferenczy L. 2000. Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycological Research, 104 (5): 545-549.

Asran-Amal A, Moustafa-Mahmoud SM, Sabet KK, El Banna OH. 2010. In vitro antagonism of cotton seedlings fungi and characterization of chitinase isozyme activities in Trichoderma harzianum. Saudi Journal of Biological Sciences 17: 153-157.

Benítez T, Rincón AM, Limón MC, Codón AC. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbioliology, 7: 249-260.

Chacón MR, Rodríguez-Galán O, Benítez T, Sousa S, Rey M, Llobell A, Delgado-Jarana J. 2007. Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. International Microbiology, 10 (1): 19-27.

Chang YC, Chang YC, Baker R, Kleifiel O, Chet I. 1986. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant disease, 70: 145-148.

De Respinis S, Vogel G, Benagli C, Tonolla M, Petrini O, Samuels GJ. 2010. MALDI-TOF MS of Trichoderma: A model system for the identification of microfungi. Mycologycal Progress, 9: 79-100.

Druzhinina IS, Kopchinskiy AG, Kubicek CP. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47: 55-64.

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews: Microbiology, 2: 43-56.

Hjeljord LG, Stensvand A, Tronsmo A. 2000. Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biological Control, 19: 149-160.

Hoyos-Carvajal, L., Chaparro, P., Abramsky, M., Chet, I., Orduz, S. 2008(a). Evaluación de aislamientos de Trichoderma spp. contra Rhizoctonia solani y Sclerotium rolfsii bajo condiciones in vitro y de

invernadero. Agronomía Colombiana. 26 (3): 451-458.

Hoyos-Carvajal L, Duque G, Orduz S, 2008(b). Antagonismo in vitro de Trichoderma spp. sobre aislamientos de Sclerotinia spp. y Rhizoctonia spp. Revista Colombiana de Ciencias Hortícolas 2 (1): 76-86.

Hoyos-Carvajal L, Orduz S, Bisset J. 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control (51): 409-416.

Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E. 2003. Influence of environmental parameters

on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology, 41 (1): 37-42.

Marcello CM, Steindorff AS, Silva SP, Silva RN, Bataus LAM, Ulhoa CJ. 2010. Expression analysis of the exo-b-1,3- glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiological Research, 165: 75-81.

Mukherjee PK, Raghu K. 1997. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia, 139: 151-155.

Samuels GJ. 2006. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96: 195-206.

Santamarina MP, Rosello J. 2006. Influence of temperature and water activity on the antagonism of Trichoderma harzianum to Verticillium and Rhizoctonia. Crop Protection, 25: 1130-1134.

Schubert M, Mourad S, Fink S, Schwarze FWMR. 2009. Ecophysiological responses of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biological Control, 49: 84-90.

Singh DP, Backhouse D, Kristiansen P. 2009. Interactions of temperature and water potential in displacement of Fusarium pseudograminearum from cereal residues by fungal antagonists. Biological Control, 48: 188-195.

Sivakumar D, Wijeratnam RSW, Abeysekara M, Wijesundara RLC, Marikar FMT, Abeysekara M. 2000. Antagonistic effect of Trichoderma harzianum on postharvest pathogens of Rambutan. Phytoparasitica, 28 3: 240-247.

Tarango SH, Nevárez VG, Orrantia E. 2009. Growth, yield and nutrient status of pecans fertilized with biosolids and inoculated with rizosphere fungi. Bioresource Technology, 100: 1992-1998.

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72: 80-86.

Zak JC, Wildman H. 2004. Fungi in stressful environments. En: Mueller GM, Bills GF, Foster MS. Biodiversity of Fungi: Inventory and Monitoring Methods. San Diego (California, U. S. A.): Elsevier Academic Press. p. 303-315.

Published

2017-10-18

How to Cite

Vargas-Hoyos, H. A., Rueda-Lorza, E. A., & Gilchrist-Ramelli, E. (2017). Antagonist activity of Trichoderma asperellum(Fungi: Ascomycota) at different temperatures. Actualidades Biológicas, 34(96), 103–112. https://doi.org/10.17533/udea.acbi.14245

Issue

Section

Full articles

Most read articles by the same author(s)